000202195 001__ 202195
000202195 005__ 20240711113941.0
000202195 0247_ $$2doi$$a10.1016/j.jnucmat.2014.12.044
000202195 0247_ $$2ISSN$$a0022-3115
000202195 0247_ $$2ISSN$$a1873-4820
000202195 0247_ $$2WOS$$aWOS:000358467200013
000202195 037__ $$aFZJ-2015-04484
000202195 082__ $$a530
000202195 1001_ $$0P:(DE-HGF)0$$aFedorczak, N.$$b0$$eCorresponding Author
000202195 245__ $$aTungsten transport and sources control in JET ITER-like wall H-mode plasmas
000202195 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000202195 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435738560_5524
000202195 3367_ $$2DataCite$$aOutput Types/Journal article
000202195 3367_ $$00$$2EndNote$$aJournal Article
000202195 3367_ $$2BibTeX$$aARTICLE
000202195 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202195 3367_ $$2DRIVER$$aarticle
000202195 520__ $$aA set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.
000202195 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000202195 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202195 7001_ $$0P:(DE-HGF)0$$aMonier-Garbet, P.$$b1
000202195 7001_ $$0P:(DE-HGF)0$$aPütterich, T.$$b2
000202195 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3
000202195 7001_ $$0P:(DE-HGF)0$$aDevynck, P.$$b4
000202195 7001_ $$0P:(DE-HGF)0$$aDumont, R.$$b5
000202195 7001_ $$0P:(DE-HGF)0$$aGoniche, M.$$b6
000202195 7001_ $$0P:(DE-HGF)0$$aJoffrin, E.$$b7
000202195 7001_ $$0P:(DE-HGF)0$$aLerche, E.$$b8
000202195 7001_ $$0P:(DE-HGF)0$$aLipschultz, B.$$b9
000202195 7001_ $$0P:(DE-HGF)0$$ade la Luna, E.$$b10
000202195 7001_ $$0P:(DE-HGF)0$$aMaddison, G.$$b11
000202195 7001_ $$0P:(DE-HGF)0$$aMaggi, C.$$b12
000202195 7001_ $$0P:(DE-HGF)0$$aMatthews, G.$$b13
000202195 7001_ $$0P:(DE-HGF)0$$aNunes, I.$$b14
000202195 7001_ $$0P:(DE-HGF)0$$aRimini, F.$$b15
000202195 7001_ $$0P:(DE-HGF)0$$aSolano, E. R.$$b16
000202195 7001_ $$0P:(DE-HGF)0$$aTamain, P.$$b17
000202195 7001_ $$0P:(DE-HGF)0$$aTsalas, M.$$b18
000202195 7001_ $$0P:(DE-HGF)0$$ade Vries, P.$$b19
000202195 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2014.12.044$$gVol. 463, p. 85 - 90$$p85 - 90$$tJournal of nuclear materials$$v463$$x0022-3115$$y2015
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.pdf$$yRestricted
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.gif?subformat=icon$$xicon$$yRestricted
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202195 8564_ $$uhttps://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202195 909CO $$ooai:juser.fz-juelich.de:202195$$pVDB
000202195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202195 9130_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000202195 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000202195 9141_ $$y2015
000202195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202195 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202195 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202195 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202195 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202195 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202195 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000202195 980__ $$ajournal
000202195 980__ $$aVDB
000202195 980__ $$aI:(DE-Juel1)IEK-4-20101013
000202195 980__ $$aUNRESTRICTED
000202195 981__ $$aI:(DE-Juel1)IFN-1-20101013