001     202195
005     20240711113941.0
024 7 _ |a 10.1016/j.jnucmat.2014.12.044
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000358467200013
|2 WOS
037 _ _ |a FZJ-2015-04484
082 _ _ |a 530
100 1 _ |a Fedorczak, N.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Tungsten transport and sources control in JET ITER-like wall H-mode plasmas
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435738560_5524
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A set of discharges performed with the JET ITER-like wall is investigated with respect to control capabilities on tungsten sources and transport. In attached divertor regimes, increasing fueling by gas puff results in higher divertor recycling ion flux, lower divertor tungsten source, higher ELM frequency and lower core plasma radiation, dominated by tungsten ions. Both pedestal flushing by ELMs and divertor screening (including redeposition) are possibly responsible. For specific scenarios, kicks in plasma vertical position can be employed to increase the ELM frequency, which results in slightly lower core radiation. The application of ion cyclotron radio frequency heating at the very center of the plasma is efficient to increase the core electron temperature gradient and flatten electron density profile, resulting in a significantly lower central tungsten peaking. Beryllium evaporation in the main chamber did not reduce the local divertor tungsten source whereas core radiation was reduced by approximately 50%.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Monier-Garbet, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pütterich, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 3
700 1 _ |a Devynck, P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dumont, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Goniche, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Joffrin, E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lerche, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lipschultz, B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a de la Luna, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Maddison, G.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Maggi, C.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Matthews, G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Rimini, F.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Solano, E. R.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Tamain, P.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Tsalas, M.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a de Vries, P.
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.1016/j.jnucmat.2014.12.044
|g Vol. 463, p. 85 - 90
|0 PERI:(DE-600)2001279-2
|p 85 - 90
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202195/files/1-s2.0-S0022311514009866-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202195
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129976
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|2 G:(DE-HGF)POF2-100
|v Plasma-wall interactions
|x 0
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21