001     202202
005     20240711113758.0
024 7 _ |a 10.1016/j.jnucmat.2014.12.030
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000358467200096
|2 WOS
037 _ _ |a FZJ-2015-04491
082 _ _ |a 530
100 1 _ |a Groth, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435739144_5524
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 1
700 1 _ |a Belo, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brix, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Calabro, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chankin, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Clever, M.
|0 P:(DE-Juel1)6806
|b 6
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 7
700 1 _ |a Corrigan, G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Drewelow, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Guillemaut, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Harting, D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 12
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 13
700 1 _ |a Järvinen, A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kruezi, U.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lawson, K. D.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lehnen, M.
|0 P:(DE-Juel1)130087
|b 17
700 1 _ |a Maggi, C. F.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Marchetto, C.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Marsen, S.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Maviglia, F.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Meigs, A. G.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Moulton, D.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Silva, C.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Stamp, M. F.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 26
773 _ _ |a 10.1016/j.jnucmat.2014.12.030
|g Vol. 463, p. 471 - 476
|0 PERI:(DE-600)2001279-2
|p 471 - 476
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202202/files/1-s2.0-S0022311514009726-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202202
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)5247
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|2 G:(DE-HGF)POF2-100
|v Plasma-wall interactions
|x 0
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21