000202205 001__ 202205
000202205 005__ 20240711113734.0
000202205 0247_ $$2doi$$a10.1016/j.jnucmat.2014.12.007
000202205 0247_ $$2ISSN$$a0022-3115
000202205 0247_ $$2ISSN$$a1873-4820
000202205 0247_ $$2Handle$$a2128/8947
000202205 0247_ $$2WOS$$aWOS:000358467200003
000202205 037__ $$aFZJ-2015-04494
000202205 082__ $$a530
000202205 1001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b0$$eCorresponding Author$$ufzj
000202205 245__ $$aPlasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER
000202205 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000202205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435739364_2005
000202205 3367_ $$2DataCite$$aOutput Types/Journal article
000202205 3367_ $$00$$2EndNote$$aJournal Article
000202205 3367_ $$2BibTeX$$aARTICLE
000202205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202205 3367_ $$2DRIVER$$aarticle
000202205 520__ $$aThe JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated.Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (View the MathML sourcefactor7) as well as within the divertor from plasma-facing to remote areas (View the MathML sourcefactor30-50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-510-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (View the MathML sourcefactor10-20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff=1.2Zeff=1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff=1.6Zeff=1.6, restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.
000202205 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000202205 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202205 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2014.12.007$$gVol. 463, p. 11 - 21$$p11 - 21$$tJournal of nuclear materials$$v463$$x0022-3115$$y2015
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.pdf$$yOpenAccess
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.gif?subformat=icon$$xicon$$yOpenAccess
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202205 8564_ $$uhttps://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202205 909CO $$ooai:juser.fz-juelich.de:202205$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202205 9130_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000202205 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000202205 9141_ $$y2015
000202205 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000202205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202205 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202205 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202205 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202205 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000202205 9801_ $$aFullTexts
000202205 980__ $$ajournal
000202205 980__ $$aVDB
000202205 980__ $$aFullTexts
000202205 980__ $$aUNRESTRICTED
000202205 980__ $$aI:(DE-Juel1)IEK-4-20101013
000202205 981__ $$aI:(DE-Juel1)IFN-1-20101013