001     202205
005     20240711113734.0
024 7 _ |a 10.1016/j.jnucmat.2014.12.007
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a 2128/8947
|2 Handle
024 7 _ |a WOS:000358467200003
|2 WOS
037 _ _ |a FZJ-2015-04494
082 _ _ |a 530
100 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435739364_2005
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The JET ITER-Like Wall experiment (JET-ILW) provides an ideal test bed to investigate plasma-surface interaction (PSI) and plasma operation with the ITER plasma-facing material selection employing beryllium in the main chamber and tungsten in the divertor. The main PSI processes: material erosion and migration, (b) fuel recycling and retention, (c) impurity concentration and radiation have be1en studied and compared between JET-C and JET-ILW. The current physics understanding of these key processes in the JET-ILW revealed that both interpretation of previously obtained carbon results (JET-C) and predictions to ITER need to be revisited. The impact of the first-wall material on the plasma was underestimated.Main observations are: (a) low primary erosion source in H-mode plasmas and reduction of the material migration from the main chamber to the divertor (View the MathML sourcefactor7) as well as within the divertor from plasma-facing to remote areas (View the MathML sourcefactor30-50). The energetic threshold for beryllium sputtering minimises the primary erosion source and inhibits multi-step re-erosion in the divertor. The physical sputtering yield of tungsten is low as 10-510-5 and determined by beryllium ions. (b) Reduction of the long-term fuel retention (View the MathML sourcefactor10-20) in JET-ILW with respect to JET-C. The remaining retention is caused by implantation and co-deposition with beryllium and residual impurities. Outgassing has gained importance and impacts on the recycling properties of beryllium and tungsten. (c) The low effective plasma charge (Zeff=1.2Zeff=1.2) and low radiation capability of beryllium reveal the bare deuterium plasma physics. Moderate nitrogen seeding, reaching Zeff=1.6Zeff=1.6, restores in particular the confinement and the L-H threshold behaviour. ITER-compatible divertor conditions with stable semi-detachment were obtained owing to a higher density limit with ILW. Overall JET demonstrated successful plasma operation in the Be/W material combination and confirms its advantageous PSI behaviour and gives strong support to the ITER material selection.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
773 _ _ |a 10.1016/j.jnucmat.2014.12.007
|g Vol. 463, p. 11 - 21
|0 PERI:(DE-600)2001279-2
|p 11 - 21
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/202205/files/1-s2.0-S0022311514009489-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:202205
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129976
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|2 G:(DE-HGF)POF2-100
|v Plasma-wall interactions
|x 0
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
|0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21