000202223 001__ 202223
000202223 005__ 20240712112833.0
000202223 0247_ $$2doi$$a10.1016/j.jallcom.2015.04.213
000202223 0247_ $$2ISSN$$a0925-8388
000202223 0247_ $$2ISSN$$a1873-4669
000202223 0247_ $$2WOS$$aWOS:000357143900138
000202223 037__ $$aFZJ-2015-04512
000202223 041__ $$aEnglish
000202223 082__ $$a670
000202223 1001_ $$0P:(DE-HGF)0$$aUbic, R.$$b0$$eCorresponding Author
000202223 245__ $$aLattice-constant prediction and effect of vacancies in aliovalently doped persovskites
000202223 260__ $$aLausanne$$bElsevier$$c2015
000202223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435733197_2489
000202223 3367_ $$2DataCite$$aOutput Types/Journal article
000202223 3367_ $$00$$2EndNote$$aJournal Article
000202223 3367_ $$2BibTeX$$aARTICLE
000202223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202223 3367_ $$2DRIVER$$aarticle
000202223 520__ $$aProcessing–structure relationships are at the heart of materials science, and predictive tools are essential for modern technological industries insofar as structure dictates properties. Point defects can have a profound effect on structure and consequently properties, but their effect on crystal chemistry is still not generally known or understood. None of the very few theoretical models which exist for perovskites are suited to the doped and defective ceramics most commonly used in commercial devices; therefore, a new empirical approach is presented here. A predictive model for the effective size of anions as well as cation vacancies and ultimately the pseudocubic lattice constant of such perovskites, based solely on published ionic radii data, has been developed here. The model can also be used to derive ionic radii of cations in twelvefold coordination. Vacancies have an effective size due to both bond relaxation and mutual repulsion of coordinating anions, and as expected this size scales with the host cation radius, but not in a straightforward way. The model is able to predict pseudocubic lattice constants, calculate the effective size of anions and cation vacancies, and identify the effects of both cation ordering and second-order Jahn Teller distortions. A lower limit on the tolerance factor of stable oxide perovskites is proposed.
000202223 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202223 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202223 7001_ $$0P:(DE-HGF)0$$aTolman, K.$$b1
000202223 7001_ $$0P:(DE-HGF)0$$aTalley, K.$$b2
000202223 7001_ $$0P:(DE-HGF)0$$aJoshi, B.$$b3
000202223 7001_ $$0P:(DE-HGF)0$$aSchmidt, J.$$b4
000202223 7001_ $$0P:(DE-HGF)0$$aFaulkner, E.$$b5
000202223 7001_ $$0P:(DE-HGF)0$$aOwens, J.$$b6
000202223 7001_ $$0P:(DE-HGF)0$$aPapac, M.$$b7
000202223 7001_ $$0P:(DE-HGF)0$$aGarland, A.$$b8
000202223 7001_ $$0P:(DE-HGF)0$$aRumrill, C.$$b9
000202223 7001_ $$0P:(DE-HGF)0$$aChan, K.$$b10
000202223 7001_ $$0P:(DE-HGF)0$$aLundy, N.$$b11
000202223 7001_ $$0P:(DE-Juel1)157700$$aKungl, H.$$b12$$ufzj
000202223 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2015.04.213$$gVol. 644, p. 982 - 995$$p982 - 995$$tJournal of alloys and compounds$$v644$$x0925-8388$$y2015
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.pdf$$yRestricted
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.gif?subformat=icon$$xicon$$yRestricted
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202223 8564_ $$uhttps://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202223 909CO $$ooai:juser.fz-juelich.de:202223$$pVDB
000202223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000202223 9130_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft - Anteil Forschungsbereich Energie$$vRenewable Energies$$x0
000202223 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202223 9141_ $$y2015
000202223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202223 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202223 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202223 920__ $$lyes
000202223 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000202223 980__ $$ajournal
000202223 980__ $$aVDB
000202223 980__ $$aI:(DE-Juel1)IEK-9-20110218
000202223 980__ $$aUNRESTRICTED
000202223 981__ $$aI:(DE-Juel1)IET-1-20110218