001     202223
005     20240712112833.0
024 7 _ |a 10.1016/j.jallcom.2015.04.213
|2 doi
024 7 _ |a 0925-8388
|2 ISSN
024 7 _ |a 1873-4669
|2 ISSN
024 7 _ |a WOS:000357143900138
|2 WOS
037 _ _ |a FZJ-2015-04512
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Ubic, R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Lattice-constant prediction and effect of vacancies in aliovalently doped persovskites
260 _ _ |a Lausanne
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435733197_2489
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Processing–structure relationships are at the heart of materials science, and predictive tools are essential for modern technological industries insofar as structure dictates properties. Point defects can have a profound effect on structure and consequently properties, but their effect on crystal chemistry is still not generally known or understood. None of the very few theoretical models which exist for perovskites are suited to the doped and defective ceramics most commonly used in commercial devices; therefore, a new empirical approach is presented here. A predictive model for the effective size of anions as well as cation vacancies and ultimately the pseudocubic lattice constant of such perovskites, based solely on published ionic radii data, has been developed here. The model can also be used to derive ionic radii of cations in twelvefold coordination. Vacancies have an effective size due to both bond relaxation and mutual repulsion of coordinating anions, and as expected this size scales with the host cation radius, but not in a straightforward way. The model is able to predict pseudocubic lattice constants, calculate the effective size of anions and cation vacancies, and identify the effects of both cation ordering and second-order Jahn Teller distortions. A lower limit on the tolerance factor of stable oxide perovskites is proposed.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Tolman, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Talley, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Joshi, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schmidt, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Faulkner, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Owens, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Papac, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Garland, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rumrill, C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chan, K.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lundy, N.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kungl, H.
|0 P:(DE-Juel1)157700
|b 12
|u fzj
773 _ _ |a 10.1016/j.jallcom.2015.04.213
|g Vol. 644, p. 982 - 995
|0 PERI:(DE-600)2012675-X
|p 982 - 995
|t Journal of alloys and compounds
|v 644
|y 2015
|x 0925-8388
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202223/files/1-s2.0-S0925838815012529-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202223
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157700
913 0 _ |a DE-HGF
|b Energie
|l Technologie, Innovation und Gesellschaft - Anteil Forschungsbereich Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 0
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21