000202224 001__ 202224
000202224 005__ 20240712112833.0
000202224 0247_ $$2doi$$a10.1016/j.jpowsour.2015.05.114
000202224 0247_ $$2ISSN$$a0378-7753
000202224 0247_ $$2ISSN$$a1873-2755
000202224 0247_ $$2WOS$$aWOS:000358809700107
000202224 037__ $$aFZJ-2015-04513
000202224 041__ $$aEnglish
000202224 082__ $$a620
000202224 1001_ $$0P:(DE-HGF)0$$aSalvadori, A.$$b0$$eCorresponding Author
000202224 245__ $$aA multiscale-compatible approach in modeling ion Transport in the electrolyte of (Lithium ion) batteries
000202224 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000202224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435734062_3520
000202224 3367_ $$2DataCite$$aOutput Types/Journal article
000202224 3367_ $$00$$2EndNote$$aJournal Article
000202224 3367_ $$2BibTeX$$aARTICLE
000202224 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202224 3367_ $$2DRIVER$$aarticle
000202224 520__ $$aA novel approach in modeling the ionic transport in the electrolyte of Li-ion batteries is here presented. Diffusion and migration processes govern the transport of ions in solution in the absence of convection. In the porous electrode theory [1] it is common to model these processes via mass balance equations and electroneutrality. A parabolic set of equations arises, in terms of a non constant electric field which is afflicted by the paradox of being generated without electrical charges. To remedy this contradiction, Maxwell's equations have been used here, coupled to Faraday's law of electrochemical charge transfer. The set of continuity equations for mass and Maxwell's equations lead to a consistent model, with distinctive energy characteristics. Numerical examples show the robustness of the approach, which is well suited for multi-scale analyses [2,3].
000202224 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202224 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202224 7001_ $$0P:(DE-HGF)0$$aGrazioli, D.$$b1
000202224 7001_ $$0P:(DE-HGF)0$$aGeers, M. G. D.$$b2
000202224 7001_ $$0P:(DE-HGF)0$$aDanilov, D.$$b3
000202224 7001_ $$0P:(DE-Juel1)165918$$aNotten, P. H. L.$$b4$$ufzj
000202224 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2015.05.114$$gVol. 293, p. 892 - 911$$p892 - 911$$tJournal of power sources$$v293$$x0378-7753$$y2015
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.pdf$$yRestricted
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.gif?subformat=icon$$xicon$$yRestricted
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202224 8564_ $$uhttps://juser.fz-juelich.de/record/202224/files/1-s2.0-S0378775315010241-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202224 909CO $$ooai:juser.fz-juelich.de:202224$$pVDB
000202224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202224 9130_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft - Anteil Forschungsbereich Energie$$vRenewable Energies$$x0
000202224 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202224 9141_ $$y2015
000202224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202224 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202224 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202224 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202224 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202224 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202224 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000202224 920__ $$lyes
000202224 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000202224 980__ $$ajournal
000202224 980__ $$aVDB
000202224 980__ $$aI:(DE-Juel1)IEK-9-20110218
000202224 980__ $$aUNRESTRICTED
000202224 981__ $$aI:(DE-Juel1)IET-1-20110218