000202241 001__ 202241
000202241 005__ 20220930130043.0
000202241 0247_ $$2doi$$a10.1093/neuonc/nov118
000202241 0247_ $$2Handle$$a2128/9356
000202241 0247_ $$2WOS$$aWOS:000364783900003
000202241 0247_ $$2altmetric$$aaltmetric:4230173
000202241 0247_ $$2pmid$$apmid:26130743
000202241 037__ $$aFZJ-2015-04530
000202241 082__ $$a610
000202241 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author
000202241 245__ $$aFrom the clinician's point of view - What is the status quo of PET in patients with brain tumors?
000202241 260__ $$aOxford$$bOxford Univ. Press$$c2015
000202241 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445586240_10773
000202241 3367_ $$2DataCite$$aOutput Types/Journal article
000202241 3367_ $$00$$2EndNote$$aJournal Article
000202241 3367_ $$2BibTeX$$aARTICLE
000202241 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202241 3367_ $$2DRIVER$$aarticle
000202241 520__ $$aThe most common type of primary brain tumor is malignant glioma. Despite intensive therapeutic efforts, the majority of these neoplasms remain incurable. Imaging techniques are important for initial tumor detection and comprise indispensable tools for monitoring treatment. Structural imaging using contrast-enhanced MRI is the method of choice for brain tumor surveillance, but its capacity to differentiate tumor from nonspecific tissue changes can be limited, particularly with posttreatment gliomas. Metabolic imaging using positron-emission-tomography (PET) can provide relevant additional information, which may allow for better assessment of tumor burden in ambiguous cases. Specific PET tracers have addressed numerous molecular targets in the last decades, but only a few have achieved relevance in routine clinical practice. At present, PET studies using radiolabeled amino acids appear to improve clinical decision-making as these tracers can offer better delineation of tumor extent as well as improved targeting of biopsies, surgical interventions, and radiation therapy. Amino acid PET imaging also appears useful for distinguishing glioma recurrence or progression from postradiation treatment effects, particularly radiation necrosis and pseudoprogression, and provides information on histological grading and patient prognosis. In the last decade, the tracers O-(2-[18F]fluoroethyl)-L-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) have been increasingly used for these indications. This review article focuses on these tracers and summarizes their recent applications for patients with brain tumors. Current uses of tracers other than FET and FDOPA are also discussed, and the most frequent practical questions regarding PET brain tumor imaging are reviewed.
000202241 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000202241 7001_ $$0P:(DE-Juel1)131777$$aLangen, K. J.$$b1
000202241 7001_ $$0P:(DE-HGF)0$$aPope, W.$$b2
000202241 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/nov118$$n11$$p1434-1444$$tNeuro-Oncology$$v17$$x1522-8517$$y2015
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.pdf$$yOpenAccess
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.gif?subformat=icon$$xicon$$yOpenAccess
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202241 8564_ $$uhttps://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202241 8767_ $$92015-07-01$$d2015-07-02$$eColour charges$$jZahlung erfolgt
000202241 909CO $$ooai:juser.fz-juelich.de:202241$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000202241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202241 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202241 9130_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000202241 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000202241 9141_ $$y2015
000202241 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2013
000202241 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202241 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202241 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202241 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202241 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202241 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202241 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000202241 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEURO-ONCOLOGY : 2013
000202241 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202241 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000202241 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000202241 9801_ $$aUNRESTRICTED
000202241 9801_ $$aFullTexts
000202241 980__ $$ajournal
000202241 980__ $$aVDB
000202241 980__ $$aUNRESTRICTED
000202241 980__ $$aI:(DE-Juel1)INM-3-20090406
000202241 980__ $$aI:(DE-Juel1)INM-4-20090406
000202241 980__ $$aAPC
000202241 981__ $$aI:(DE-Juel1)INM-4-20090406