001     202241
005     20220930130043.0
024 7 _ |a 10.1093/neuonc/nov118
|2 doi
024 7 _ |a 2128/9356
|2 Handle
024 7 _ |a WOS:000364783900003
|2 WOS
024 7 _ |a altmetric:4230173
|2 altmetric
024 7 _ |a pmid:26130743
|2 pmid
037 _ _ |a FZJ-2015-04530
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
245 _ _ |a From the clinician's point of view - What is the status quo of PET in patients with brain tumors?
260 _ _ |a Oxford
|c 2015
|b Oxford Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445586240_10773
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The most common type of primary brain tumor is malignant glioma. Despite intensive therapeutic efforts, the majority of these neoplasms remain incurable. Imaging techniques are important for initial tumor detection and comprise indispensable tools for monitoring treatment. Structural imaging using contrast-enhanced MRI is the method of choice for brain tumor surveillance, but its capacity to differentiate tumor from nonspecific tissue changes can be limited, particularly with posttreatment gliomas. Metabolic imaging using positron-emission-tomography (PET) can provide relevant additional information, which may allow for better assessment of tumor burden in ambiguous cases. Specific PET tracers have addressed numerous molecular targets in the last decades, but only a few have achieved relevance in routine clinical practice. At present, PET studies using radiolabeled amino acids appear to improve clinical decision-making as these tracers can offer better delineation of tumor extent as well as improved targeting of biopsies, surgical interventions, and radiation therapy. Amino acid PET imaging also appears useful for distinguishing glioma recurrence or progression from postradiation treatment effects, particularly radiation necrosis and pseudoprogression, and provides information on histological grading and patient prognosis. In the last decade, the tracers O-(2-[18F]fluoroethyl)-L-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) have been increasingly used for these indications. This review article focuses on these tracers and summarizes their recent applications for patients with brain tumors. Current uses of tracers other than FET and FDOPA are also discussed, and the most frequent practical questions regarding PET brain tumor imaging are reviewed.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
700 1 _ |a Langen, K. J.
|0 P:(DE-Juel1)131777
|b 1
700 1 _ |a Pope, W.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1093/neuonc/nov118
|0 PERI:(DE-600)2094060-9
|n 11
|p 1434-1444
|t Neuro-Oncology
|v 17
|y 2015
|x 1522-8517
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/202241/files/Neuro%20Oncol-2015-Galldiks-1434-44.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:202241
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131777
913 0 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEURO-ONCOLOGY : 2013
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)INM-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21