000202298 001__ 202298
000202298 005__ 20240711085629.0
000202298 037__ $$aFZJ-2015-04569
000202298 1001_ $$0P:(DE-Juel1)159161$$aBhat, Kaustubh$$b0$$ufzj
000202298 1112_ $$a20th International Conference on Solid State Ionics$$cKeystone, CO$$d2015-06-14 - 2015-06-19$$gSSI-20$$wUSA
000202298 245__ $$aHigh ionic conductivity in the system Na3+xSc2(SiO4)x(PO4)3-x
000202298 260__ $$c2015
000202298 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1436796157_20878$$xAfter Call
000202298 3367_ $$033$$2EndNote$$aConference Paper
000202298 3367_ $$2DataCite$$aOther
000202298 3367_ $$2ORCID$$aLECTURE_SPEECH
000202298 3367_ $$2DRIVER$$aconferenceObject
000202298 3367_ $$2BibTeX$$aINPROCEEDINGS
000202298 520__ $$aThe abundance of sodium and the similarities between lithium and sodium intercalation processes make it an attractive alternative as a charge carrier in alkali ion-batteries. Therefore, interest in high sodium ion-conductive materials is increasing, especially in the widely studied class of NASICON solid electrolytes [1]. A literature survey concluded that the partial substitution of phosphorus with silicon in the NASICON materials of general formula Na1+2w+x-y+zM(II)wM(III)xM(V)yM(IV)2-w-x-y(SiO4)z(PO4)3-z enhances the ionic conductivity [2].The aim of this work is to elucidate the impact of introducing silicon ions in the highly conductive material Na3Sc2(PO4)3 [3] (sigmaNa=3.8*10-5 S∙cm-1 at 30 °C) and to obtain an even better ionic conductor suitable as electrolyte in a solid state sodium battery. Various compositions of the solid solution Na3+xSc2(SiO4)x(PO4)3-x with 0.1≤x≤0.8 were synthesized by solid state reaction and crystallographic data were gathered, correlated with results of ionic conductivity measurements and compared simulation models. As a result, one of the 10 best ion-conductive NASICON materials to date was obtained for x=0.4 (sigmaNa=8.3*10-4 S∙cm-1 at 30 °C). Furthermore, the ionic conductivity data were correlated with the structural bottleneck along the conduction pathway of the sodium ions and agrees well with the conductivity-structure-relationship established for the series Na1+x+yZr2-xScx(SiO4)y(PO4)3-y [2,4]. Besides, different ionic pathways of the sodium ions in the structure were studied with density functional theory (DFT) [5] and the nudged elastic band (NEB) method [6] and the resulting activation energies were compared with the experimental values. [1] H.Y.P. Hong, Mat. Res. Bull. 11 (1976) 173-182[2] M. Guin, F. Tietz, J.Power Sources 273 (2015) 1056-1064.[3] J.M. Winaud, A. Rulmont, P. Tarte, J.Mater. Sci. 25 (1990) 4008-4013[4] M.A. Subramanian, P.R. Rudolf, A. Clearfield, J.Solid State Chem. 60 (1985) 172-181.[5] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979[6] G. Henkelman, B.P. Uberuaga, H. Jónsson, J.Chem. Phys. 113 (2000) 9901-9904
000202298 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202298 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202298 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1$$ufzj
000202298 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000202298 7001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b3$$eCorresponding Author$$ufzj
000202298 773__ $$y2015
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf$$yRestricted
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.gif?subformat=icon$$xicon$$yRestricted
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202298 8564_ $$uhttps://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202298 909CO $$ooai:juser.fz-juelich.de:202298$$pVDB
000202298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159161$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202298 9141_ $$y2015
000202298 9130_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000202298 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202298 920__ $$lyes
000202298 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202298 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000202298 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000202298 980__ $$aconf
000202298 980__ $$aVDB
000202298 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202298 980__ $$aI:(DE-Juel1)PGI-1-20110106
000202298 980__ $$aI:(DE-82)080011_20140620
000202298 980__ $$aUNRESTRICTED
000202298 981__ $$aI:(DE-Juel1)IMD-2-20101013
000202298 981__ $$aI:(DE-Juel1)PGI-1-20110106