001     202298
005     20240711085629.0
037 _ _ |a FZJ-2015-04569
100 1 _ |0 P:(DE-Juel1)159161
|a Bhat, Kaustubh
|b 0
|u fzj
111 2 _ |a 20th International Conference on Solid State Ionics
|g SSI-20
|c Keystone, CO
|d 2015-06-14 - 2015-06-19
|w USA
245 _ _ |a High ionic conductivity in the system Na3+xSc2(SiO4)x(PO4)3-x
260 _ _ |c 2015
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1436796157_20878
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The abundance of sodium and the similarities between lithium and sodium intercalation processes make it an attractive alternative as a charge carrier in alkali ion-batteries. Therefore, interest in high sodium ion-conductive materials is increasing, especially in the widely studied class of NASICON solid electrolytes [1]. A literature survey concluded that the partial substitution of phosphorus with silicon in the NASICON materials of general formula Na1+2w+x-y+zM(II)wM(III)xM(V)yM(IV)2-w-x-y(SiO4)z(PO4)3-z enhances the ionic conductivity [2].The aim of this work is to elucidate the impact of introducing silicon ions in the highly conductive material Na3Sc2(PO4)3 [3] (sigmaNa=3.8*10-5 S∙cm-1 at 30 °C) and to obtain an even better ionic conductor suitable as electrolyte in a solid state sodium battery. Various compositions of the solid solution Na3+xSc2(SiO4)x(PO4)3-x with 0.1≤x≤0.8 were synthesized by solid state reaction and crystallographic data were gathered, correlated with results of ionic conductivity measurements and compared simulation models. As a result, one of the 10 best ion-conductive NASICON materials to date was obtained for x=0.4 (sigmaNa=8.3*10-4 S∙cm-1 at 30 °C). Furthermore, the ionic conductivity data were correlated with the structural bottleneck along the conduction pathway of the sodium ions and agrees well with the conductivity-structure-relationship established for the series Na1+x+yZr2-xScx(SiO4)y(PO4)3-y [2,4]. Besides, different ionic pathways of the sodium ions in the structure were studied with density functional theory (DFT) [5] and the nudged elastic band (NEB) method [6] and the resulting activation energies were compared with the experimental values. [1] H.Y.P. Hong, Mat. Res. Bull. 11 (1976) 173-182[2] M. Guin, F. Tietz, J.Power Sources 273 (2015) 1056-1064.[3] J.M. Winaud, A. Rulmont, P. Tarte, J.Mater. Sci. 25 (1990) 4008-4013[4] M.A. Subramanian, P.R. Rudolf, A. Clearfield, J.Solid State Chem. 60 (1985) 172-181.[5] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979[6] G. Henkelman, B.P. Uberuaga, H. Jónsson, J.Chem. Phys. 113 (2000) 9901-9904
536 _ _ |0 G:(DE-HGF)POF3-131
|a 131 - Electrochemical Storage (POF3-131)
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |0 P:(DE-Juel1)129667
|a Tietz, Frank
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)158083
|a Guin, Marie
|b 3
|e Corresponding Author
|u fzj
773 _ _ |y 2015
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202298
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159161
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129667
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158083
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-123
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Fuel Cells
|x 0
913 1 _ |0 G:(DE-HGF)POF3-131
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21