Hauptseite > Publikationsdatenbank > High ionic conductivity in the system Na3+xSc2(SiO4)x(PO4)3-x > print |
001 | 202298 | ||
005 | 20240711085629.0 | ||
037 | _ | _ | |a FZJ-2015-04569 |
100 | 1 | _ | |0 P:(DE-Juel1)159161 |a Bhat, Kaustubh |b 0 |u fzj |
111 | 2 | _ | |a 20th International Conference on Solid State Ionics |g SSI-20 |c Keystone, CO |d 2015-06-14 - 2015-06-19 |w USA |
245 | _ | _ | |a High ionic conductivity in the system Na3+xSc2(SiO4)x(PO4)3-x |
260 | _ | _ | |c 2015 |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1436796157_20878 |2 PUB:(DE-HGF) |x After Call |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
520 | _ | _ | |a The abundance of sodium and the similarities between lithium and sodium intercalation processes make it an attractive alternative as a charge carrier in alkali ion-batteries. Therefore, interest in high sodium ion-conductive materials is increasing, especially in the widely studied class of NASICON solid electrolytes [1]. A literature survey concluded that the partial substitution of phosphorus with silicon in the NASICON materials of general formula Na1+2w+x-y+zM(II)wM(III)xM(V)yM(IV)2-w-x-y(SiO4)z(PO4)3-z enhances the ionic conductivity [2].The aim of this work is to elucidate the impact of introducing silicon ions in the highly conductive material Na3Sc2(PO4)3 [3] (sigmaNa=3.8*10-5 S∙cm-1 at 30 °C) and to obtain an even better ionic conductor suitable as electrolyte in a solid state sodium battery. Various compositions of the solid solution Na3+xSc2(SiO4)x(PO4)3-x with 0.1≤x≤0.8 were synthesized by solid state reaction and crystallographic data were gathered, correlated with results of ionic conductivity measurements and compared simulation models. As a result, one of the 10 best ion-conductive NASICON materials to date was obtained for x=0.4 (sigmaNa=8.3*10-4 S∙cm-1 at 30 °C). Furthermore, the ionic conductivity data were correlated with the structural bottleneck along the conduction pathway of the sodium ions and agrees well with the conductivity-structure-relationship established for the series Na1+x+yZr2-xScx(SiO4)y(PO4)3-y [2,4]. Besides, different ionic pathways of the sodium ions in the structure were studied with density functional theory (DFT) [5] and the nudged elastic band (NEB) method [6] and the resulting activation energies were compared with the experimental values. [1] H.Y.P. Hong, Mat. Res. Bull. 11 (1976) 173-182[2] M. Guin, F. Tietz, J.Power Sources 273 (2015) 1056-1064.[3] J.M. Winaud, A. Rulmont, P. Tarte, J.Mater. Sci. 25 (1990) 4008-4013[4] M.A. Subramanian, P.R. Rudolf, A. Clearfield, J.Solid State Chem. 60 (1985) 172-181.[5] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979[6] G. Henkelman, B.P. Uberuaga, H. Jónsson, J.Chem. Phys. 113 (2000) 9901-9904 |
536 | _ | _ | |0 G:(DE-HGF)POF3-131 |a 131 - Electrochemical Storage (POF3-131) |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
700 | 1 | _ | |0 P:(DE-Juel1)129667 |a Tietz, Frank |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)161591 |a Guillon, Olivier |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)158083 |a Guin, Marie |b 3 |e Corresponding Author |u fzj |
773 | _ | _ | |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202298/files/SSI_GUIN_C6_03.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:202298 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)159161 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129667 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161591 |a Forschungszentrum Jülich GmbH |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)158083 |a Forschungszentrum Jülich GmbH |b 3 |k FZJ |
913 | 0 | _ | |0 G:(DE-HGF)POF2-123 |1 G:(DE-HGF)POF2-120 |2 G:(DE-HGF)POF2-100 |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |v Fuel Cells |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF3-131 |1 G:(DE-HGF)POF3-130 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Speicher und vernetzte Infrastrukturen |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080011_20140620 |k JARA-ENERGY |l JARA-ENERGY |x 2 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080011_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|