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The mesoscopic simulation technique known as multiparticle collision dynamics is presented as
a very appropriate method to simulate complex systems in the presence of temperature inhomo-
geneities. Three different methods to impose the temperature gradient are compared and character-
ized in the parameter landscape. Two methods include the interaction of the system with confining
walls. The third method considers open boundary conditions by imposing energy fluxes. The trans-
port of energy characterizing the thermal diffusivity is also investigated. The dependence of this
transport coefficient on the method parameters and the accuracy of existing analytical theories is
discussed. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687168]

I. INTRODUCTION

The influence of temperature inhomogeneities is of high
relevance for many systems in nature and industry. Ex-
amples range from separation techniques,1, 2 microfluidic
applications,3, 4 or even conditions that might have facilitated
the origin of life.5, 6 The physical phenomena related with
the presence of temperature gradients are thermophoresis or
transport of mass, and transport of energy. Apart from vari-
ous experimental techniques,7 and analytical theories,8, 9 the
development of computers and simulation techniques has al-
ready contributed to gain deeper understanding and to in-
crease the applicability of these phenomena.10–12

A large part of the existing simulations that consider the
presence of temperature gradients are performed with molec-
ular dynamics (MD) with essentially an atomistic descrip-
tion of the system,13–15 or alternatively with direct simula-
tion Monte Carlo method (DSMC), which is a particle-based,
numerical scheme for solving the nonlinear Boltzmann equa-
tion for hard spheres.16–18 Nevertheless, reproducing the prop-
erties of most soft matter systems such as colloidal disper-
sions or polymer solutions is a task beyond the possibilities of
simulations based in these approaches. The large separation
of the relevant length and time scales of solute and solvent
requires the formulation of effective coarse-grained descrip-
tions of the solvent and the solute. An important requirement
of such descriptions is the inclusion of hydrodynamic inter-
actions which are mediated by the solvent and are non-local
both in time and space. In recent years, several particle-based
hydrodynamic mesoscopic techniques have been proposed.19

Mass and momentum local conservation are necessary re-
quirements for hydrodynamic interactions to be correctly
modeled. Two of the most well-known and extended hydro-
dynamic mesoscopic simulation techniques are lattice Boltz-
mann (LB) (Refs. 20, 21) and dissipative dynamics dynamics
(DPD).22–24 In the most extended versions of both these meth-
ods mass and momentum are locally conserved quantities but

a)Electronic mail: m.ripoll@fz-juelich.de.

not the energy, what means that they are restricted to be used
in isothermal conditions. In the LB method particle densities
move in the nodes of a lattice with discretized velocities, such
that mass and momentum fulfil local conservation laws.21 In
order to include the internal energy flux several routes have
been explored25–28 without one that has clearly shown to be
the optimal one. Examples are to consider higher complexity
of the lattices to increase the symmetries, to add counter-terms
to cancel spurious anisotropic operators, or to account for hy-
brid descriptions. These approaches have recently been suc-
cessfully employed to investigate systems such as phase sep-
aration of binary fluids29 or Rayleigh Taylor instabilities.30 In
standard DPD, particles positions and velocities are updated
according to Newton equations of motion by considering con-
servative, dissipative, and stochastic interactions. Mass and
momentum are then conserved quantities and thermal fluctu-
ations are taken into account. An energy conserving extension
of the method (DPD+e) has been proposed31, 32 by consider-
ing an internal energy variable for each particle, where only
the heat conduction contribution needs to be specified.33–35

It has been shown that DPD+e can sustain transport of en-
ergy and temperature gradients,33, 36, 37 although precise con-
servation requires integration algorithms even more involved
than in standard DPD.38–40 Recent applications of this model
have been found in convection,41 multicomponet systems,42

and nanocomposities.43

A more recent approach has been proposed by Male-
vanets and Kapral44, 45 with the method multiparticle collision
dynamics (MPC), also known as stochastic rotation dynam-
ics. This method conserves in its basic implementation mass,
momentum, and energy, including also thermal fluctuations.
This simplicity presents MPC as a promising tool for the in-
vestigation of the effect of temperature inhomogeneities in
complex systems. In this work, we include essentially for the
first time temperature gradients with the MPC method, care-
fully analyzing the implementation in confinement and with
open boundary conditions.46 We also investigate the transport
of heat characterizing the thermal diffusivity coefficient as a
function of the MPC parameters.
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II. METHOD

A. Multiparticle collision dynamics

MPC is a particle-based method, in which the solvent is
represented by N point particles.47, 48 Each particle i = (1, . . . ,
N) has a constant mass mi, a variable position ri, and a variable
velocity vi. The mass of the particles is typically the same for
all of them m, while positions and velocities are continuously
distributed in the phase space. The MPC dynamics takes place
in two alternating steps. In the streaming step all particles bal-
listically propagate ignoring their neighbours during a certain
collision time h,

ri(t + h) = ri(t) + hvi(t). (1)

In the collision step the simulation box is divided in cubic
collision boxes of size a. The interaction is performed among
particles in the same collision box through the center of mass
velocity vcm, i that considers all particles j which are located
in the same collision box as particle i at time t,

vcm,i(t) =
∑i,t

j mj vj (t)∑i,t
j mj

. (2)

The actual collision is defined as a rotation by an angle α

around a random direction of the relative velocity of the par-
ticle to the collision box center of mass. The particle velocity
after the collision is then,

vi(t + h) = vcm,i(t) + R(α)[vi(t) − vcm,i(t)], (3)

with R(α) the stochastic rotation matrix. This simple colli-
sion rule implies that each particle changes the magnitude and
the direction of its velocity, such that the total mass, momen-
tum, and also kinetic energy are conserved in each collision
box before and after the collision. This ensures the presence
of hydrodynamic interactions, together with the sustainabil-
ity of temperature gradients, and thermal fluctuations. In or-
der to preserve Galilean invariance, and to enhance collisional
transport random shift needs to be additionally considered.49

This simply means that the superimposed regular lattice that
defines the collision boxes has an origin that shifts in each
collision between 0 and a in each direction.

The reference units are usually chosen to be the particle
mass m, the collision box size a, and the equilibrium temper-
ature T, that are typically set to one. This corresponds to mea-
sure length as x̂ = x/a and time as t̂ = t

√
kBT /ma2, with kB

the Boltzmann constant. The parameters that will determine
the properties of the MPC are then the collision time h, the
rotation angle α, and the number particle density ρ = Na3/V,
with V the volume of the simulation box. The range of param-
eters with large values of α and small values of h has shown to
display a liquid-like behavior characterized by large values of
the Schmidt number Sc = ν/D with ν the kinematic viscosity
and D the diffusion coefficient.50, 51 Local angular momentum
conservation is though violated in this standard formulation.
An appropriate modification of the method has already been
proposed,52, 53 for cases in which this is of relevance.

The MPC method has already been extensively tested,
showing, for example, to reproduce the Navier-Stokes
equation,44 to include hydrodynamic interactions in poly-

mer solutions,50, 54 or more recently to fulfil the fluctu-
ation theorem.55 In isothermal conditions, MPC has al-
ready been applied to a large number of systems like col-
loidal solutions,56, 57 rod-like colloids,58, 59 polyelectrolyte
solutions,60 or nanoswimmers.61–63

B. Temperature profile establishment

We simulate a three-dimensional system, with periodic
boundary conditions in two spatial directions, and a temper-
ature difference imposed at the boundaries of the third direc-
tion, z. The boundary temperatures are Tc at the cold bath, and
Th at the hot bath (with Tc < Th). Various possible implemen-
tations of the thermal baths are discussed in Sec. III. For clar-
ity, we explain before some general aspects of the temperature
profile establishment. Initially the system has a uniform tem-
perature, which is generally chosen to be T0 = (Th + Tc)/2.
After a short equilibration time, the system in contact with the
thermal baths displays a steady temperature distribution that
for not too large temperature differences is linear,

T (z) = Tc + Th − Tc

Lz

z, (4)

with Lz the distance between the two baths. An example of
the simulated temperature profile can be seen in Fig. 1, with
Lz = Ly = Lx = 40. The temperature is computed as the
average kinetic energy per particle, with averages calculated
within layers parallel to the walls and therefore perpendicu-
lar to the temperature gradient direction. The actual average
system temperature shows small deviations from T0 in the
case that the total energy is not a fixed quantity, when it will
be time dependent 〈T(t)〉. In these cases, all particle velocities
can globally be rescaled to enforce precisely this constraint,
with a frequency to be determined in each application. We
choose as the reference value T = 1, the average tempera-
ture in absence of fluctuations, namely, T0. Standard values
chosen for the boundary temperatures are Tc = 0.9 and Th

= 1.1. These values result in a relative temperature differ-
ence (Th − Tc)/T = 0.2. Considering as a reference value the
room temperature T = 300 K, this relative difference would
correspond to a temperature difference of 60 ◦C.

0.9

1.0

1.1

 0  10  20  30  40
z

T(z)/T
–

ρ(z)/ρ–

FIG. 1. Example of a temperature profile (circles) and the corresponding
particle number density profile (squares). The symbols report the simulated
values and the lines correspond respectively to Eqs. (4) and (5).
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Together with the temperature profile, the solvent den-
sity also becomes position dependent as a result of a constant
pressure p throughout the system. The MPC fluid is known to
behave with the ideal gas equation of state, pV = NkBT. The
position dependent particle number density ρ(z) = N(z)a3/V
is then,

ρ(z) = p

kBT (z)
. (5)

If the temperature profile in Eq. (4) is considered, the pressure
can be calculated taking into account that the total number
of particles in the simulation box is constant, i.e.,

∫
Vd3rρ(z)

= N, what leads to

p = ρ
kB(Th − Tc)

ln (Th/Tc)
. (6)

Although Eq. (5) corresponds to a inversely linear depen-
dence with the position, in the limit of small temperature dif-
ferences, the density profile can be approximated to a linear
function,

ρ(z) = ρ

[
1 − 1

T

Th − Tc

Lz

(
z − Lz

2

)]
(7)

as can be seen in Fig. 1.

III. BOUNDARY CONDITIONS

A. Walls with virtual particles

Systems confined between parallel walls at homogeneous
temperature conditions have been largely simulated with the
MPC solvent.64–66 In order to obtain stick boundary condi-
tions, i.e., walls and neighbouring particles with equal veloc-
ities, two modifications have been included in the algorithm.
First in the streaming step bounce-back is considered. This
means that particles reaching one of the walls revert their di-
rection and velocity. In the collision step the consideration of
random shift translates in partially filled collision boxes at the

walls, such that the effect of virtual particles is considered.64

In cases where there are nw interacting particles in a collision
box intersecting with the wall with nw < ρ, ρ − nw virtual
particles will be considered. These particles are chosen with a
momenta drawn from a Maxwell-Boltzmann distribution with

zero mean velocity and variance (ρ − nw)
√

kBT /m, such that
the values for temperature and density match those values in
the bulk.

The implementation of the temperature gradient is
achieved by considering the walls as thermal baths and impos-
ing temperatures Tc and Th, respectively, in the cold and hot
walls. The corresponding densities ρc and ρh are then given
by Eq. (5). Therefore, the interaction with the virtual parti-
cles in the hot wall provides energy to the system, while the
interaction with the virtual particles in the cold wall absorbs
averagely an equivalent amount of energy. The temperature
distribution of the solvent between the walls nicely reaches a
linear profile. The temperature of the fluid close to the walls is
though not the same as the wall temperature as can be seen in
Fig. 2(a). This temperature jump is an effect related although
decoupled to the slip velocity of particles close to a wall in
the presence of solvent flow.67, 68 In order to characterize the
temperature jump, we define the dimensionless quantity TJ,

TJ = T (0) − Tc

T − Tc

. (8)

The solvent temperatures at the walls, T(0) and T(Lz) can be
characterized from a linear fit. In case of perfect match T(0)
= Tc, and TJ = 0 by construction. Meanwhile, in the limiting
case of maximum mismatch, there would be no temperature
variation upon contact with the heat bath, this is T (0) = T

and TJ = 1.
Figure 2(b) shows TJ as a function of the solvent param-

eters, that increases for decreasing α and increasing h. The
dependence of TJ with the system size is further analyzed
for a parameter set with large temperature mismatch values.
Results are displayed in Fig. 2(c) where it can be seen that

0.0

0.5

1.0

0  45  90  135  180

0.1 1

α

h

TJ

(b)

0.9

1.0

1.1

 0  20  40

(a)

T(z)/T
–

z

0.0

0.5

1.0

0.00 0.03 0.06

(c)

TJ

a/Lz

FIG. 2. (a) Temperature profile with h = 0.5 and walls with virtual particles. Open circles are simulation results, solid lines are the temperatures imposed
at the walls, and dashed lines the actual boundary temperatures T(0) and T(Lz). Otherwise stated the employed parameters are h = 0.1, α = 120, ρ =
5, a cubic size L = 40, Tc = 0.9, and Th = 1.1. (b) Dimensionless temperature jump TJ in Eq. (8) as a function of α (circles, down-axis), and as a
function of h (squares, up-axis). (c) Dependence of TJ with the inverse of the system length Lz in the temperature gradient direction, with α = 30 and
Lx = 20 = Ly.
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increasing Lz noticeable decreases TJ. Eventually, it can be
extrapolated that TJ → 0 for Lz → ∞. On the other hand, we
have checked that TJ does not depend on the neutral directions
Lx, Ly, and no significant differences are observed by choos-
ing the hot layer instead of the cold in the definition of TJ in
Eq. (8). Finally, trial simulations imposing a starting configu-
ration with TJ = 0, show the same final stationary state with
TJ �= 0.

Similar effects have already been observed in simulations
performed with other methods as DSMC (Ref. 17) or LB,69, 70

and are known in the context of rarefied gases.67, 68 The com-
mon physical characteristic in these systems is that the aver-
age particle mean free path λ varies due to the presence of
the wall, such that it is effectively smaller in the neighbour-
hood of a wall than in the bulk region. Considering this vari-
ation, kinetic theory predicts the existence of a layer of width
λ with nonlinear temperature profile,67, 68 what defines the
kinetic boundary layer, also known as the Knudsen layer.
The overall relevance of such layer effect is then related with
the system size, via the Knudsen number which is defined as
Kn = λ/L being L a characteristic system size, which in our
case is the distance between walls Lz. The mean free path in
MPC is usually defined as λ = h

√
kBT /m. This is though not

an appropriate value to quantify Kn, since a more physical
definition should regard the increase of λ with decreasing col-
lision angle,71 and decreasing density, what would account for
the divergence in the limit α → 0, or ρ → 0, where no colli-
sions occur. All our results in Figs. 2(b) and 2(c) could then
be explained as direct relation between of TJ and Kn similar
to the behavior of rarefied gases.67, 68 A small difference could
have been expected by choosing the hot layer in the definition
of TJ in Eq. (8) since the width of the Knudsen layer depends
on the temperature. It seems though that the differentiation is
smaller than the statistical precision of the presented simula-
tion results.

In the DPD-heat conduction model33, 34 arrested particles
interchange internal energy, such that in spite of the absence
of particle motion, local temperature variations are possible.
Simulations with this model have shown to display a temper-
ature gradient without any jump in the proximity of the walls.
This observation also supports the explanation of the MPC
temperature jump at the walls in terms of the variation of the
Knudsen number. A different system where a surface tem-
perature drop has been experimentally observed is a strongly
heated spherical nanoparticle in a thermalized fluid.72 In this
case, the fluid has radially varying temperature around the
particle which displays a jump relative to the particle tem-
perature. This has been justified as a manifestation of the in-
terfacial thermal resistance, caused by the mismatch of the
thermal properties between the solid and liquid, and by the
strength of the interfacial bonding, although the dependence
of the Knudsen number has not been yet analyzed.

B. Walls with thermostats

To investigate other routes that more accurately accom-
modate the temperature of the solvent particles close to the
walls, we disregard the virtual particles at the walls, and im-

0.0

0.5

 0  45  90  135  180

0.1 1

α

h

TJ

0.95

0.90

T(z)/T
–

0 5 10z

FIG. 3. TJ for walls with thermostats as a function of α, and h. Symbols
and parameters similar to Fig. 2. The inset shows the detail of a temperature
profile close to the wall for with α = 30, h = 0.1, ρ = 5, and Lz = 40.

plement thermostats in the boundary slabs next to the walls.
The limiting temperatures Tc and Th are now enforced in the
cells neighbouring the walls by rescaling the kinetic energies
of such solvent particles in each simulation step. The temper-
ature distribution is now linear sufficiently far away from the
walls as can be seen in the inset of Fig. 3. A shoulder-like be-
havior appears though close to the boundaries, what implies
the presence of a temperature jump. To quantify this behavior,
we employ the definition of TJ in Eq. (8) with T(0) calculated
from a linear fit to the temperature profile by excluding the
first slabs at the boundaries, as shown in the inset of Fig. 3.
Similarly to the previous case, TJ is dependent on the method
parameters, as shown in Fig. 3. As it could be expected, the
data show a similar trend, and TJ becomes more significant
for large values of h or smaller α given a certain value of
the system size. This is in agreement with the dependence of
the Knudsen number. The deviation of the wall temperature is
though much less pronounced than for the virtual particles in
Fig. 2(b). It can therefore be concluded that the dependence of
the temperature jump does not only depend exclusively on the
Knudsen number but also on the specific boundary conditions
that provide different energy accommodation coefficients.68

1. Comparison of wall implementations

We can conclude that both these methods produce sat-
isfactory linear profiles away from the walls, apart from the
temperature jump at the boundaries. Therefore, they can be
employed to study the effects of temperature gradients in the
presence of confining walls. Furthermore, the parameters for
which the temperature jump are smallest, namely, small colli-
sion times h, and large α values, are the parameters for which
the MPC algorithm has been mostly employed, since they are
also the values for which the Schmidt number is larger and
where MPC behaves as a liquid-like solvent.50, 51, 54

In order to compare the two methods for implement-
ing walls at different temperatures, several issues have to be
considered. First, we have characterized that the temperature
jump is considerably more pronounced for the walls with vir-
tual particles than for the thermostat ones. In practice, the
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effective temperature gradient will be calculated with the ac-
tual boundary temperatures, and given that in both cases the
profiles are nicely linear, no further consequences are ex-
pected unless the precise boundary behavior is of interest.
From the computational point of view, it should be noted that
virtual particles at the walls constitute an additional, but not
really significant effort since just three stochastic velocities
per collision box are required. This computational cost is ap-
proximately the same as the thermalization of the layers in the
proximity of the wall. With both techniques the boundary lay-
ers have to be disregarded. In the case of the virtual particles
one layer will be sufficient, while for the thermostated walls it
will be necessary to not account for at least two layers. Con-
sequently, the walls with virtual particles will be in general
better suited to study temperature gradients in the presence of
confining walls, although a more precise consideration should
be performed in each particular application of the methods.

C. Periodic boundary conditions: Velocity
exchange algorithm

In order to study problems without confinement, the im-
plementation of periodic boundary conditions is a convenient
route. In the presence of a temperature gradient the periodic-
ity is obtained by defining a cold layer at one extreme of the
simulation box and a hot layer in the center. In this way the
simulation box is divided in two halves with increasing tem-
perature towards the center, as has been sketched in Fig. 4.

Similar than in the presence of hard walls, there are dif-
ferent ways to enforce the cold and hot layers to have differ-
ent temperatures than the bulk. One could consider the pres-
ence of virtual particles at fixed temperatures, or thermalize
the particles in such layers. In fact, previous simulations with
MPC and a temperature gradient have been very briefly re-
ported by Pooley and Yeomans.71 They employ a simulation
box of size Lz = 100, and thermostat as the cold bath the layer
between z = 0 and z = 20, and as the hot bath the layer be-
tween z = 50 and z = 70. They do not report any temperature
jump although with the employed parameters we would ex-
pect them to be present.

Here we follow a different route in which the bath tem-
peratures at the boundaries are not directly imposed, but a
consequence of an energy flux. The original method was in-
troduced by Hafskjold et al.10 and employed in the first sim-
ulations with MD and temperature gradients.73–75 They pro-
posed to transfer fixed amounts of energy from the cold to the

C
  o

  l
  d

C
  o

  l
  d

H
  o

  t
H

  o
  t

FIG. 4. Illustration of the periodic simulation box in the presence of a tem-
perature gradient.

0.9
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z

T(z)/T–

(a)

 0

 0.2

 0.4

 0.6

 0  1  2  3  4

f(v)

v

(b) cold
hot

FIG. 5. (a) Temperature profile obtained from the velocity exchange algo-
rithm with h = 0.1, α = 120, and ρ = 10. Symbols correspond to the mea-
sured temperatures, dashed-line is the estimated temperature profile from
Eq. (10). (b) Velocity squared distribution in Eq. (9) for the temperatures
Tc = 0.9 and Th = 1.1, typically used for the cold and hot baths.

hot layer. We employ the modification proposed by Müller-
Plathe11 and since then mostly employed with MD. The idea
consists in determining the hottest particles in the cold slab
and the coldest particles in the hot slab, and then exchange
their velocities, as a type of a Maxwell’s demon. This method
has the advantage that the total energy E and momentum P of
the system are exactly conserved. The temperature profile ob-
tained with the velocity exchange algorithm in Fig. 5(a) shows
a nice linear profile between the cold and hot slabs. This in-
dicates that the velocity exchange algorithm provides a useful
tool to study the effect of temperature gradients with open
boundary conditions in combination with the MPC solvent.
On the other hand, a temperature jump between the boundary
layer and the bulk has been observed for some solvent pa-
rameters. Although now there are no walls implemented, in
the boundary layers the average particle collision frequency
is varied, and consequently the mean free path, what defines a
corresponding Knudsen layer. For this case, we have not pre-
cisely quantified the effect but the observed trend is similar
to before, namely, the temperature jump increases for small
values of α and large values of h. Therefore, and also con-
sidering the artificial exchange of energy between the hot
and cold slabs, these are usually disregarded from the anal-
ysis, similarly as it is done with the two previous boundary
conditions.

In order to discuss how strong is the impact of such un-
physical transformation, we characterize the distribution of
particle velocity squared f(v). In the presence of a temper-
ature gradient the velocity distribution P(v) can be approx-
imated with Maxwell-Boltzmann, although strictly speaking
it will deviate from it.76 f(v) can then be calculated as f(v)dv
= ∫

�v2P(v)dv, where � denotes the integration over the po-
lar and azimuthal angles,

f (v) = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
. (9)

This is the so-called Maxwell’s speed function. In Fig. 5(b),
f(v) is displayed for the two temperatures typically used as
cold and hot baths. It can be observed that the difference be-
tween the two distributions is not so large, such that the ex-
change of velocity is easily absorbed by the new distribution.
Additionally, the number of particles in each layer is large
enough, such that the velocity distribution is not strongly per-
turbed. Although the energy flux is locally applied in each
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exchange, the energy is distributed on average over the whole
slab. As already discussed, for some parameters this veloc-
ity exchange is enough to produce a boundary temperature
jump, and it will also then perturb the propagation of hydro-
dynamic interactions. The disruption is though not expected
to be dramatic in the standard parameter regime since in each
velocity exchange only a very small percentage of particles
are affected. This artificial effect in the propagation of hydro-
dynamic interactions at the exchange layers has to be consid-
ered together with other three known coexisting effects. First
are the standard finite size effects, this is the effect of the peri-
odic images and more important the truncation of the hydro-
dynamic propagation spectra.35 The third effect is the partic-
ular symmetry of these non-equilibrium simulations with the
two subsequent temperature gradients in opposite directions.
Consequently, it will be of particular importance to discuss
the effect of the boundary layers in each application of the
method.

The velocity exchange algorithm with both MD and
MPC, controls the magnitude of the temperature gradient by
tuning the time between velocity exchanges τ ex and the num-
ber of particles nex in each exchange. To our knowledge, the
determination of the temperature gradient as a function of the
simulation parameters has only been quantified by perform-
ing the corresponding simulations. In the Appendix, we pro-
pose an argument by which the temperature gradient can be
approximated by

|∇T | = 1

2

nex

τexκT

kBT
ln(cρaA)

A
, (10)

with κT the thermal conductivity, A = LxLy the cold/hot layer
area, and the constant c = 4π (m/2πkBT )3/2. In Fig. 5(a) both
simulated and estimated temperature profiles are displayed,
showing that Eq. (10) gives a reasonable estimation of the
temperature gradient. The deviation can be attributed to the
number of approximations performed in calculating Eq. (10).
In practice, the values of the temperature gradient, mean tem-
perature, system size, and solvent parameters will be de-
termined by the simulation requirements, and the exchange
value τ ex/nex will be estimated. The temperature gradient re-
laxes in between the velocity exchanges and since a stationary
temperature profile is required, τ ex is chosen as small as pos-
sible. It would, for example, not be reasonable to perform 100
exchanges every 100 steps instead of one exchange in every
step.

IV. THERMAL DIFFUSIVITY

In a series of papers Ihle, Tüzel, and Kroll have stud-
ied in great detail the transport properties of the MPC
solvent.49, 77–82 By using a discrete-time projection operator
technique, they calculate Green-Kubo relations to character-
ize the MPC transport coefficients. The shear viscosity has
been measured by them and others50, 79, 80, 83, 84 showing in
all cases very good agreement between analytical theory and
simulation results for the whole range of MPC parameters.
On the other hand, the simulation measurements of the self-
diffusion coefficient show a noticeable discrepancy for the
MPC parameter region where the Schmidt number is larger

(small collision times h, and large rotation angle α).50, 51 This
was attributed to the breakdown of the validity of the molec-
ular chaos approximation employed in the theory. Molecular
chaos assumes the absence of particle correlations, which are
the origin of the building up of the hydrodynamic interactions.

Similar to other transport properties the analytical expres-
sion of the thermal diffusivity kT can be expressed as the sum
of a kinetic and a collision contribution kT = kkin

T + kcol
T that

read

kkin
T = kBT h

2m

[
d

1 − cos(α)
− 1

+ 2d

ρ

(
7 − d

5
− 1

4
csc2(α/2)

) ]
,

kcol
T = a2

h

1

3(d + 2)ρ

(
1 − 1

ρ

)
[1 − cos(α)]. (11)

These expressions are valid for d = 2 or d = 3 dimensions.
In previous works, kT has been measured in equilibrium sim-
ulations by two types of measurements. One is performed by
characterizing the dynamic structure factor, where informa-
tion about thermal diffusivity and the sound attenuation is
obtained.79–82 Independent measurements of kT are obtained
by the quantification of the correlation of the entropy den-
sity. These values are in good agreement with the theoretical
predictions, for the employed values of h. Alternatively, sim-
ulations in the presence of a temperature gradient have been
reported by Pooley and Yeomans71 in which measurements of
kT agree well with the analytical expressions for not too small
values of the rotation angle α and the employed parameters.

In this work we obtain simulation measurements of the
thermal diffusivity in a very broad range of parameters. These
simulations are performed outside equilibrium, in the pres-
ence of steady temperature gradients induced with the three
types of boundary conditions discussed in Sec. III. These re-
sults allow us to survey the accuracy of the analytical expres-
sions where both, collisional and kinetic contributions, are
simultaneously taken into account, and compare the perfor-
mance of the different boundary conditions employed in this
work. In the simulations, the energy exchange 
E between
the cold and the hot baths can be exactly quantified. 
E is
given by the difference of kinetic energies of the solvent be-
fore and after the contact with each heat bath. The energy
exchange in the hot and the cold bath are exactly the same
by construction in the case of the velocity exchange periodic
boundary conditions. When the temperature gradient is sim-
ulated in combination with the walls, both quantities are not
exactly the same, but only on average. The flux of energy jq

in the system is then obtained as

jq = 
E

A
t
, (12)

with A the area, and 
t is the time interval considered to quan-
tify 
E. The Fourier law states that the heat flux is propor-
tional to the negative temperature gradient,

jq = −κT ∇T , (13)
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FIG. 6. Thermal diffusivity for two values of ρ. (a) kT as a function of α

for h = 0.1. (b) kT as a function of h for α = 120. The insets are a zoom-
in for large values of α and small h, respectively. Lines correspond to the
analytical approach in Eq. (11) and symbols to simulation results. Continuous
lines correspond to ρ = 5 and dashes lines to ρ = 20. Triangles refer to
simulations with walls and thermostats, circles to walls with virtual particles,
and squares to the velocity exchange algorithm.

with κT the thermal conductivity, which is simply related to
the thermal diffusivity kT by

κT = ρcpkT , (14)

where cp is the specific heat per particle at constant pressure,
which is cp = (d + 2)kB/2 since MPC describes an ideal fluid.
The simulations have been performed with 105 time steps for
equilibration and 105 time steps to obtain a good averaged
value of 
E. The simulation box is cubic with size L = 40
when using walls and doubled in the temperature gradient di-
rection when employing the velocity exchange algorithm.

The thermal diffusivity kT simulation results for two val-
ues of the number density ρ are displayed in Fig. 6 together
with the corresponding analytical predictions in Eq. (11), as
function of the rotation angle α and the collision time h. Com-
parison among the three temperature gradient implementa-
tions is performed for the smaller number density. The agree-
ment is in general very good. Some deviations among the
three sets of data can only be observed in the case of very large
collision times, where the results obtained with the velocity
exchange algorithm differ from the results obtained in the
presence of the walls and the analytical results. From this we
could conclude that the velocity exchange algorithm with pe-
riodic boundary conditions may display some artifacts when
large collision times are employed. This could be related to
the presence of periodic boundary conditions or to the veloc-
ity exchange algorithm. Nonetheless, in most applications the
employed collision times are much smaller, such that this will
in general not be a problem.

The accuracy of the analytical prediction in Eq. (11) is
quantified more precisely in Fig. 7 by displaying the relative
deviation of the simulated thermal diffusivity kT, sim with re-
spect to the analytical approach kT, an. Although the trend is
not monotonous, it can be said that in general the prediction
is better for systems with large ρ, large α, and large h. For
small values of α and h the deviations decrease, probably due
to a cancellation of errors. The analytical approach in Eq. (11)
shows to underestimate the simulated values up to 8% for ρ

= 20, but up to 20% for ρ = 5. Ihle et al. already reported in
Ref. 81 that the expressions for the heat diffusivity in Eq. (11)
were of O(1/ρ). In that work, higher order terms were

-0.1
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FIG. 7. Relative deviation of the simulated thermal diffusivity kT, sim with
respect to the analytical approach kT, an, 
kT/kT ≡ (kT, sim − kT, an)/kT, an a)
as a function of α (b) as a function of h. Simulation values are those presented
in Fig. 6 for walls and thermostats. Open symbols and dashed lines employ
both analytical contributions in Eq. (11), while solid symbols and solid lines
take into account the collisional contribution in Eq. (15).

calculated,

kcol
T = a2

h

1

3(d + 2)ρ

[
1 + e−ρ(ln ρ − 1)

− 1

ρ
− 1

ρ2
+ O

(
1

ρ3

) ]
[1 − cos(α)]. (15)

Figure 7 quantifies as well the relative deviation with respect
to this expression. Equation (15) shows to worsen the pre-
diction of Eq. (11) for ρ = 5 and not to change it appre-
ciably for ρ = 20. The worsening could be explained since
Eq. (15) is reported in Ref. 81 to be a better approach for
large values of ρ.85 Interestingly, the deviation shows to de-
crease significantly with increasing density, and for ρ = 20
it monotonously decreases with decreasing h. This could in-
dicate that the origin of the deviations is a combination of
two effects. One is the breakdown of the molecular chaos ap-
proximation, similar to what is already quantified for the self-
diffusion coefficient.51, 82 And the other effect would be the
influence of the density fluctuations at smaller densities. In a
recent work,86 Ihle derives the transport equations for MPC
directly from the Liouville equation by means of a Chapman-
Enskog expansion, where particle number fluctuations are au-
tomatically part of the derivation. This is in contrast with pre-
vious approximations where the particle number fluctuations
were included by averaging over an assumed Poisson distribu-
tion of the particle positions. Unfortunately, quantitative com-
parison is not possible since only expressions in two dimen-
sions and with a fixed collision angle α = 90◦ are provided in
that work. In spite of the deviations, the analytical values are
reasonable, and the energy transport can be easily character-
ized within the MPC solvent.

V. DISCUSSION AND CONCLUSIONS

The implementation of temperature gradients with the
MPC solvent in the presence of walls at fixed different tem-
peratures results in the desired linear profiles. The tempera-
tures at the walls show a temperature jump that depend on the
Knudsen number and the boundary conditions, such that can
be minimized by the use of adequate parameters. In case of
open boundary conditions, the velocity exchange algorithm is
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implemented. An argument to estimate the temperature gradi-
ent in terms of the exchange and simulation parameters valid
for various simulation methods is presented and probed for
MPC. The energy transport can be easily characterized within
the MPC solvent, and shows to agree reasonably well with ex-
isting analytical values obtained by means of kinetic theory.

Another relevant aspect in the applicability of the method
is the separation of the solvent characteristic times of energy
and mass propagation. This is important when the system
does not only contain linearly varying temperatures, but also
more general temperature inhomogeneities. This is the case of
a hot Brownian particle that carries with it a radially symmet-
ric temperature distribution,72, 87, 88 where a temperature drop
at the particle surface has also been reported. For a spherical
particle of radius σ , the characteristic thermal energy propa-
gation time can be expressed as τ k ∼ σ 2/kT. The particle mass
diffusion time is then τD ∼ σ 2/Ds, where the self-diffusion co-
efficient is Ds � kBT /6πησ assuming the Stokes equation,
stick boundary conditions, and being η the shear viscosity. In
order to obtain an estimation of these characteristic times the
transport coefficients can be safely approximated by the exist-
ing kinetic theory studies.82 Parameters standardly employed
in applications allow us to calculate τ k/τD ∼ 10−2. This indi-
cates that the important time scale separation can be properly
taken into account by MPC, as already shown in the simula-
tion of a thermophoretic nanoswimmer.89 All these results put
the MPC method forward as a promising and attractive tool to
study mass and energy transport of soft matter systems in the
presence of temperature inhomogeneities.
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APPENDIX: RELATION BETWEEN THE EXCHANGE
FREQUENCY AND THE TEMPERATURE GRADIENT
IN THE VELOCITY EXCHANGE ALGORITHM

We following present an argument to obtain an estima-
tion of the temperature gradient in terms of the exchange and
simulation parameters. The temperature gradient ∇T is pro-
portional to the heat flux jq with the thermal conductivity κT

as given in Eq. (13). The analytical expression of κT is in gen-
eral known and for the MPC solvent has been discussed in
Sec. IV. By definition the heat flux can be calculated with
Eq. (12). Here, the time interval 
t is the time between ex-
changes τ ex. The energy increment is given by the energy in-
crement in each velocity exchange 
Eex, times the number
of exchanges nex, and divided by 2 since the energy flux is
distributed in the two half boxes; this is


E = 1

2
nex
Eex. (A1)

The energy increment in each velocity exchange is


Eex = 1

2
m

(
v2

min − v2
max

)
, (A2)

vmin corresponds to the coldest particle in the hot slab. In gen-
eral, we can approximate vmin � 0, as can be seen in Fig. 5(b).
vmax corresponds to the hottest particle in the cold slab. In
order to get a rough estimation of such velocity in terms of
the input parameters, we first approximate the temperature
Tc � T in Eq. (9). Second, since we are in the tail of the dis-
tribution, we neglect the correction given by the factor v2

max

in Eq. (9), such that

f (vmax) � c exp

(
−mv2

max

2kBT

)
. (A3)

And third we assume that in such a cold layer there are ρaA
particles, or similarly that the density is the same as the aver-
age density ρc � ρ, and that there will always be at least one
particle with the temperature at the tail of the distribution,

f (vmax) � 1

ρaA
. (A4)

From Eqs. (A3) and (A4), we obtain our rough estimation of
vmax,

v2
max � 2kBT

m
ln(cρaA). (A5)

Therefore, comparing the heat flux jq in Eqs. (12) and (13),
and substituting Eq. (A5) in Eq. (A2) and then in Eq. (A1), we
get that Eq. (10) provides the estimated temperature gradient.

The resulting expression in Eq. (10) is expected to be
valid for simulations with the MPC solvent, and also with
pure MD, or any other technique that employs the velocity
exchange algorithm, with a understood then as the thickness
of the cold/hot layer.
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