000202312 001__ 202312
000202312 005__ 20210129220115.0
000202312 0247_ $$2doi$$a10.1088/1742-5468/2015/06/P06030
000202312 0247_ $$2WOS$$aWOS:000357407300032
000202312 037__ $$aFZJ-2015-04576
000202312 082__ $$a530
000202312 1001_ $$0P:(DE-Juel1)159135$$aTordeux, Antoine$$b0$$eCorresponding Author$$ufzj
000202312 245__ $$aQuantitative comparison of estimations for the density within pedestrian streams
000202312 260__ $$aBristol$$bIOP Publ.$$c2015
000202312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435563330_10711
000202312 3367_ $$2DataCite$$aOutput Types/Journal article
000202312 3367_ $$00$$2EndNote$$aJournal Article
000202312 3367_ $$2BibTeX$$aARTICLE
000202312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202312 3367_ $$2DRIVER$$aarticle
000202312 520__ $$aIn this work, the precision of estimators for the density within unidirectional pedestrian streams is evaluated. The analysis is done in controllable systems where the density is homogeneous and all the characteristics are known. The objectives are to estimate the global density with local measurements or density profile at high spatial resolution with no bias and low fluctuations. The classical estimation using discrete numbers of observed pedestrians is compared to continuous estimators using spacing distance, Voronoi diagram, Gaussian kernel as well as maximum likelihood. Mean squared error and bias of the estimators are calculated from empirical data and Monte Carlo experiments. The results show quantitatively how continuous approaches improve the precision of the estimations.
000202312 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000202312 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202312 7001_ $$0P:(DE-Juel1)156196$$aZhang, Jun$$b1$$ufzj
000202312 7001_ $$0P:(DE-Juel1)132269$$aSteffen, Bernhard$$b2$$ufzj
000202312 7001_ $$0P:(DE-Juel1)132266$$aSeyfried, Armin$$b3$$ufzj
000202312 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/2015/06/P06030$$gVol. 2015, no. 6, p. P06030 -$$n6$$pP06030 -$$tJournal of statistical mechanics: theory and experiment$$v2015$$x1742-5468$$y2015
000202312 8564_ $$uhttps://juser.fz-juelich.de/record/202312/files/1742-5468_2015_6_P06030.pdf$$yRestricted
000202312 8564_ $$uhttps://juser.fz-juelich.de/record/202312/files/1742-5468_2015_6_P06030.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202312 909CO $$ooai:juser.fz-juelich.de:202312$$pVDB
000202312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159135$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156196$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132269$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202312 9130_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000202312 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000202312 9141_ $$y2015
000202312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202312 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202312 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202312 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202312 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000202312 980__ $$ajournal
000202312 980__ $$aVDB
000202312 980__ $$aI:(DE-Juel1)JSC-20090406
000202312 980__ $$aUNRESTRICTED