001     202312
005     20210129220115.0
024 7 _ |a 10.1088/1742-5468/2015/06/P06030
|2 doi
024 7 _ |a WOS:000357407300032
|2 WOS
037 _ _ |a FZJ-2015-04576
082 _ _ |a 530
100 1 _ |a Tordeux, Antoine
|0 P:(DE-Juel1)159135
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Quantitative comparison of estimations for the density within pedestrian streams
260 _ _ |a Bristol
|c 2015
|b IOP Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435563330_10711
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this work, the precision of estimators for the density within unidirectional pedestrian streams is evaluated. The analysis is done in controllable systems where the density is homogeneous and all the characteristics are known. The objectives are to estimate the global density with local measurements or density profile at high spatial resolution with no bias and low fluctuations. The classical estimation using discrete numbers of observed pedestrians is compared to continuous estimators using spacing distance, Voronoi diagram, Gaussian kernel as well as maximum likelihood. Mean squared error and bias of the estimators are calculated from empirical data and Monte Carlo experiments. The results show quantitatively how continuous approaches improve the precision of the estimations.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Zhang, Jun
|0 P:(DE-Juel1)156196
|b 1
|u fzj
700 1 _ |a Steffen, Bernhard
|0 P:(DE-Juel1)132269
|b 2
|u fzj
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 3
|u fzj
773 _ _ |a 10.1088/1742-5468/2015/06/P06030
|g Vol. 2015, no. 6, p. P06030 -
|0 PERI:(DE-600)2138944-5
|n 6
|p P06030 -
|t Journal of statistical mechanics: theory and experiment
|v 2015
|y 2015
|x 1742-5468
856 4 _ |u https://juser.fz-juelich.de/record/202312/files/1742-5468_2015_6_P06030.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202312/files/1742-5468_2015_6_P06030.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202312
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159135
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156196
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132269
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132266
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21