001     202322
005     20210129220116.0
024 7 _ |a 10.1002/anie.201502315
|2 doi
024 7 _ |a 0044-8249
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a WOS:000356390900045
|2 WOS
024 7 _ |a altmetric:3979949
|2 altmetric
024 7 _ |a pmid:25959438
|2 pmid
037 _ _ |a FZJ-2015-04586
082 _ _ |a 540
100 1 _ |a Feng, Lingyan
|0 P:(DE-Juel1)157885
|b 0
245 _ _ |a Multi-Level Logic Gate Operation Based on Amplified Aptasensor Performance
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435568568_10716
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Conventional electronic circuits can perform multi-level logic operations; however, this capability is rarely realized by biological logic gates. In addition, the question of how to close the gap between biomolecular computation and silicon-based electrical circuitry is still a key issue in the bioelectronics field. Here we explore a novel split aptamer-based multi-level logic gate built from INHIBIT and AND gates that performs a net XOR analysis, with electrochemical signal as output. Based on the aptamer–target interaction and a novel concept of electrochemical rectification, a relayed charge transfer occurs upon target binding between aptamer-linked redox probes and solution-phase probes, which amplifies the sensor signal and facilitates a straightforward and reliable diagnosis. This work reveals a new route for the design of bioelectronic logic circuits that can realize multi-level logic operation, which has the potential to simplify an otherwise complex diagnosis to a “yes” or “no” decision.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Lyu, Zhaozi
|0 P:(DE-Juel1)162320
|b 1
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 2
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 3
|e Corresponding Author
773 _ _ |a 10.1002/anie.201502315
|g Vol. 54, no. 26, p. 7693 - 7697
|0 PERI:(DE-600)2011836-3
|n 26
|p 7693 - 7697
|t Angewandte Chemie / International edition
|v 54
|y 2015
|x 1433-7851
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202322/files/7693_ftp.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202322
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157885
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162320
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128707
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l Grundlagen für zukünftige Informationstechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-423
|2 G:(DE-HGF)POF2-400
|v Sensorics and bioinspired systems
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21