000202324 001__ 202324
000202324 005__ 20210129220116.0
000202324 037__ $$aFZJ-2015-04588
000202324 1001_ $$0P:(DE-Juel1)164241$$aZadorozhnyi, Ihor$$b0$$ufzj
000202324 1112_ $$aThe 23rd International Conference on Noise and Fluctuations$$cXi'an$$d2015-06-01 - 2015-06-05$$wChina
000202324 245__ $$aFeatures of the Gate Coupling Effect in Liquid-Gated Si Nanowire FETs
000202324 260__ $$c2015
000202324 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1435318286_10112$$xOutreach
000202324 3367_ $$033$$2EndNote$$aConference Paper
000202324 3367_ $$2DataCite$$aOutput Types/Conference Poster
000202324 3367_ $$2DRIVER$$aconferenceObject
000202324 3367_ $$2ORCID$$aCONFERENCE_POSTER
000202324 3367_ $$2BibTeX$$aINPROCEEDINGS
000202324 520__ $$aWe present results of a comprehensive study of the liquid-back gate coupling effect in our Si nanowire (NW) field-effect transistor (FET) structures using noise spectroscopy in different operation modes, including variable back-gate voltage. The constant channel resistance regime was used for measurements of the transport and noise properties of the liquid-gated Si NW FETs and simulations using Sentaurus TCAD software to improve our understanding of the coupling effect phenomena. The concentration profiles were simulated for different liquid- and back-gate voltages, which correspond to the experimental working points. The noise spectra were studied while tuning the position of the conducting channel in the liquid-gated Si NW FET. Results demonstrate that the dominant flicker noise mechanism in such structures is the number fluctuations due to the localization of the conducting channel near the dielectric layer of the liquid gate.
000202324 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000202324 7001_ $$0P:(DE-Juel1)138431$$aPud, Sergii$$b1
000202324 7001_ $$0P:(DE-HGF)0$$aPatrychuk, M.$$b2
000202324 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b3$$eCorresponding Author$$ufzj
000202324 773__ $$y2015
000202324 909CO $$ooai:juser.fz-juelich.de:202324$$pVDB
000202324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164241$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202324 9130_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vSensorics and bioinspired systems$$x0
000202324 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000202324 9141_ $$y2015
000202324 920__ $$lyes
000202324 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000202324 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000202324 980__ $$aposter
000202324 980__ $$aVDB
000202324 980__ $$aI:(DE-Juel1)PGI-8-20110106
000202324 980__ $$aI:(DE-82)080009_20140620
000202324 980__ $$aUNRESTRICTED