000020233 001__ 20233
000020233 005__ 20210129210743.0
000020233 0247_ $$2pmid$$apmid:22387170
000020233 0247_ $$2pmc$$apmc:PMC3321133
000020233 0247_ $$2DOI$$a10.1016/j.neuroimage.2012.02.037
000020233 0247_ $$2WOS$$aWOS:000302926600046
000020233 037__ $$aPreJuSER-20233
000020233 041__ $$aeng
000020233 082__ $$a610
000020233 084__ $$2WoS$$aNeurosciences
000020233 084__ $$2WoS$$aNeuroimaging
000020233 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000020233 1001_ $$0P:(DE-Juel1)VDB75804$$aJakobs, O.$$b0$$uFZJ
000020233 245__ $$aAcross-study and within-subject functional connectivity of a right-temporo-parietal junction subregion involved in stimulus-context integration
000020233 260__ $$aOrlando, Fla.$$bAcademic Press$$c2012
000020233 300__ $$a2389 - 2398
000020233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020233 3367_ $$2DataCite$$aOutput Types/Journal article
000020233 3367_ $$00$$2EndNote$$aJournal Article
000020233 3367_ $$2BibTeX$$aARTICLE
000020233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020233 3367_ $$2DRIVER$$aarticle
000020233 440_0 $$04545$$aNeuroImage$$v60$$x1053-8119$$y4
000020233 500__ $$aThis work was partly funded by the Human Brain Project (R01-MH074457; A.R.L., S.B.E., P.T.F), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; K.Z., S.B.E.) and the DFG (IRTG 1328, S.B.E.).
000020233 520__ $$aBidirectional integration between sensory stimuli and contextual framing is fundamental to action control. Stimuli may entail context-dependent actions, while temporal or spatial characteristics of a stimulus train may establish a contextual framework for upcoming stimuli. Here we aimed at identifying core areas for stimulus-context integration and delineated their functional connectivity (FC) using meta-analytic connectivity modeling (MACM) and analysis of resting-state networks. In a multi-study conjunction, consistently increased activity under higher demands on stimulus-context integration was predominantly found in the right temporo-parietal junction (TPJ), which represented the largest cluster of overlap and was thus used as the seed for the FC analyses. The conjunction between task-dependent (MACM) and task-free (resting state) FC of the right TPJ revealed a shared network comprising bilaterally inferior parietal and frontal cortices, anterior insula, premotor cortex, putamen and cerebellum, i.e., a 'ventral' action/attention network. Stronger task-dependent (vs. task-free) connectivity was observed with the pre-SMA, dorsal premotor cortex, intraparietal sulcus, basal ganglia and primary sensori motor cortex, while stronger resting-state (vs. task-dependent) connectivity was found with the dorsolateral prefrontal and medial parietal cortex. Our data provide strong evidence that the right TPJ may represent a key region for the integration of sensory stimuli and contextual frames in action control. Task-dependent associations with regions related to stimulus processing and motor responses indicate that the right TPJ may integrate 'collaterals' of sensory processing and apply (ensuing) contextual frames, most likely via modulation of preparatory loops. Given the pattern of resting-state connectivity, internal states and goal representations may provide the substrates for the contextual integration within the TPJ in the absence of a specific task.
000020233 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000020233 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000020233 588__ $$aDataset connected to Web of Science, Pubmed
000020233 65320 $$2Author$$afMRI
000020233 65320 $$2Author$$aResting state
000020233 65320 $$2Author$$aMeta-analysis
000020233 65320 $$2Author$$aConnectivity modeling
000020233 65320 $$2Author$$aRight temporo-parietal junction
000020233 650_2 $$2MeSH$$aAttention: physiology
000020233 650_2 $$2MeSH$$aBrain: physiology
000020233 650_2 $$2MeSH$$aBrain Mapping
000020233 650_2 $$2MeSH$$aHumans
000020233 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000020233 650_2 $$2MeSH$$aNeural Pathways: physiology
000020233 650_2 $$2MeSH$$aPsychomotor Performance: physiology
000020233 650_2 $$2MeSH$$aRest: physiology
000020233 650_7 $$2WoSType$$aJ
000020233 7001_ $$0P:(DE-Juel1)131693$$aLangner, R.$$b1$$uFZJ
000020233 7001_ $$0P:(DE-Juel1)VDB53458$$aCaspers, S.$$b2$$uFZJ
000020233 7001_ $$0P:(DE-Juel1)VDB98850$$aRoski, C.$$b3$$uFZJ
000020233 7001_ $$0P:(DE-Juel1)131855$$aCieslik, E.C.$$b4$$uFZJ
000020233 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b5$$uFZJ
000020233 7001_ $$0P:(DE-HGF)0$$aLaird, A.R.$$b6
000020233 7001_ $$0P:(DE-HGF)0$$aFox, P. T.$$b7
000020233 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S.B.$$b8$$ufzj
000020233 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2012.02.037$$gVol. 60, p. 2389 - 2398$$p2389 - 2398$$q60<2389 - 2398$$tNeuroImage$$v60$$x1053-8119$$y2012
000020233 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321133
000020233 909CO $$ooai:juser.fz-juelich.de:20233$$pVDB
000020233 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020233 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020233 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020233 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020233 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020233 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020233 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000020233 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000020233 9141_ $$y2012
000020233 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000020233 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000020233 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000020233 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000020233 970__ $$aVDB:(DE-Juel1)135475
000020233 980__ $$aVDB
000020233 980__ $$aConvertedRecord
000020233 980__ $$ajournal
000020233 980__ $$aI:(DE-Juel1)INM-1-20090406
000020233 980__ $$aI:(DE-Juel1)INM-2-20090406
000020233 980__ $$aUNRESTRICTED
000020233 981__ $$aI:(DE-Juel1)INM-2-20090406