| Hauptseite > Publikationsdatenbank > Across-study and within-subject functional connectivity of a right-temporo-parietal junction subregion involved in stimulus-context integration > print |
| 001 | 20233 | ||
| 005 | 20210129210743.0 | ||
| 024 | 7 | _ | |2 pmid |a pmid:22387170 |
| 024 | 7 | _ | |2 pmc |a pmc:PMC3321133 |
| 024 | 7 | _ | |2 DOI |a 10.1016/j.neuroimage.2012.02.037 |
| 024 | 7 | _ | |2 WOS |a WOS:000302926600046 |
| 037 | _ | _ | |a PreJuSER-20233 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 610 |
| 084 | _ | _ | |2 WoS |a Neurosciences |
| 084 | _ | _ | |2 WoS |a Neuroimaging |
| 084 | _ | _ | |2 WoS |a Radiology, Nuclear Medicine & Medical Imaging |
| 100 | 1 | _ | |0 P:(DE-Juel1)VDB75804 |a Jakobs, O. |b 0 |u FZJ |
| 245 | _ | _ | |a Across-study and within-subject functional connectivity of a right-temporo-parietal junction subregion involved in stimulus-context integration |
| 260 | _ | _ | |a Orlando, Fla. |b Academic Press |c 2012 |
| 300 | _ | _ | |a 2389 - 2398 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 4545 |a NeuroImage |v 60 |x 1053-8119 |y 4 |
| 500 | _ | _ | |a This work was partly funded by the Human Brain Project (R01-MH074457; A.R.L., S.B.E., P.T.F), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; K.Z., S.B.E.) and the DFG (IRTG 1328, S.B.E.). |
| 520 | _ | _ | |a Bidirectional integration between sensory stimuli and contextual framing is fundamental to action control. Stimuli may entail context-dependent actions, while temporal or spatial characteristics of a stimulus train may establish a contextual framework for upcoming stimuli. Here we aimed at identifying core areas for stimulus-context integration and delineated their functional connectivity (FC) using meta-analytic connectivity modeling (MACM) and analysis of resting-state networks. In a multi-study conjunction, consistently increased activity under higher demands on stimulus-context integration was predominantly found in the right temporo-parietal junction (TPJ), which represented the largest cluster of overlap and was thus used as the seed for the FC analyses. The conjunction between task-dependent (MACM) and task-free (resting state) FC of the right TPJ revealed a shared network comprising bilaterally inferior parietal and frontal cortices, anterior insula, premotor cortex, putamen and cerebellum, i.e., a 'ventral' action/attention network. Stronger task-dependent (vs. task-free) connectivity was observed with the pre-SMA, dorsal premotor cortex, intraparietal sulcus, basal ganglia and primary sensori motor cortex, while stronger resting-state (vs. task-dependent) connectivity was found with the dorsolateral prefrontal and medial parietal cortex. Our data provide strong evidence that the right TPJ may represent a key region for the integration of sensory stimuli and contextual frames in action control. Task-dependent associations with regions related to stimulus processing and motor responses indicate that the right TPJ may integrate 'collaterals' of sensory processing and apply (ensuing) contextual frames, most likely via modulation of preparatory loops. Given the pattern of resting-state connectivity, internal states and goal representations may provide the substrates for the contextual integration within the TPJ in the absence of a specific task. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK409 |2 G:(DE-HGF) |x 0 |c FUEK409 |a Funktion und Dysfunktion des Nervensystems (FUEK409) |
| 536 | _ | _ | |0 G:(DE-HGF)POF2-89571 |a 89571 - Connectivity and Activity (POF2-89571) |c POF2-89571 |f POF II T |x 1 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Attention: physiology |
| 650 | _ | 2 | |2 MeSH |a Brain: physiology |
| 650 | _ | 2 | |2 MeSH |a Brain Mapping |
| 650 | _ | 2 | |2 MeSH |a Humans |
| 650 | _ | 2 | |2 MeSH |a Magnetic Resonance Imaging |
| 650 | _ | 2 | |2 MeSH |a Neural Pathways: physiology |
| 650 | _ | 2 | |2 MeSH |a Psychomotor Performance: physiology |
| 650 | _ | 2 | |2 MeSH |a Rest: physiology |
| 650 | _ | 7 | |2 WoSType |a J |
| 653 | 2 | 0 | |2 Author |a fMRI |
| 653 | 2 | 0 | |2 Author |a Resting state |
| 653 | 2 | 0 | |2 Author |a Meta-analysis |
| 653 | 2 | 0 | |2 Author |a Connectivity modeling |
| 653 | 2 | 0 | |2 Author |a Right temporo-parietal junction |
| 700 | 1 | _ | |0 P:(DE-Juel1)131693 |a Langner, R. |b 1 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB53458 |a Caspers, S. |b 2 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB98850 |a Roski, C. |b 3 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)131855 |a Cieslik, E.C. |b 4 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)131714 |a Zilles, K. |b 5 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Laird, A.R. |b 6 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Fox, P. T. |b 7 |
| 700 | 1 | _ | |0 P:(DE-Juel1)131678 |a Eickhoff, S.B. |b 8 |u fzj |
| 773 | _ | _ | |0 PERI:(DE-600)1471418-8 |a 10.1016/j.neuroimage.2012.02.037 |g Vol. 60, p. 2389 - 2398 |p 2389 - 2398 |q 60<2389 - 2398 |t NeuroImage |v 60 |x 1053-8119 |y 2012 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321133 |
| 909 | C | O | |o oai:juser.fz-juelich.de:20233 |p VDB |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF2-89571 |a DE-HGF |v Connectivity and Activity |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
| 915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
| 915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
| 915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |g INM |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |g INM |k INM-2 |l Molekulare Organisation des Gehirns |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)135475 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|