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Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe:

Spin inertia versus Hanle effect
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The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied

using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure

the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities.

The T1 time of the donor-bound electron spin of about 1.6 µs remains nearly constant for external magnetic fields

varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8–45 K. These findings impose

severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering

between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between

phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors

caused by the 1.5 ps pulsed laser excitation.
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I. INTRODUCTION

Fluorine-doped ZnSe recently emerged as a promising

material system in the field of solid-state quantum information

technologies. So far indistinguishable single-photon sources

and optically controllable electron spin qubits were demon-

strated in this material [1–3]. Long electron spin coherence

times and spin relaxation times are one of the prerequisites for

a system to be suited for quantum information technologies [4].

To obtain access to these times, optical techniques have proved

to be an adequate measurement tool.

Generally, the phenomenon of optical orientation is used to

create the initial spin orientation [5]. It involves two processes:

the photogeneration of spin-oriented carriers by absorption

of circularly polarized light and the possible spin relaxation

with the characteristic time τS during the lifetime τ of these

carriers [5]. In order to determine absolute values of these times

one often uses an “internal clock” of the system: The periodic

Larmor precession of the electron spins about an external

magnetic field with the frequency �L = µBgeB/� can be used

as such a clock. Here µB is the Bohr magneton and ge is the

Landé factor of the electrons. One of the common methods to

study spin lifetimes TS = 1/(1/τ + 1/τS) in atoms [6,7] and

in solid-state systems [5,8] is the measurement of the Hanle

effect. The Hanle effect analyzes the decrease of the carrier

spin polarization (typically via the circular polarization degree

of photoluminescence) in a transverse magnetic field so that it

also employs the clock defined by the Larmor precession. For

relatively strong magnetic fields, for which the spin lifetime TS

is long compared to the time scale determined by the Larmor

precession frequency �L (TS ≫ 1/�L), the electron spins

perform many revolutions during their lifetime [5]. Thus, the

spin polarization along the direction of observation decreases

with increasing transverse magnetic field. The Hanle curve

describes this behavior. Its half-width at half maximum is

given by B1/2 = �/(µBgeTS), so the spin lifetime TS can be

obtained by measuring the Hanle curve, if the g factor is

known [9–11].

The method based on the Hanle effect employs the

relaxation time approximation, in which the spin dynamics is

described by one or a few exponents. It is a fair approximation,

if the relaxation is caused, for example, by processes with

short correlation times (Markovian processes) since these short

correlation times lead to dynamic averaging over magnetic

fields of different origin, acting on the electron. However,

this approximation is violated for strongly localized electrons,

when the correlation time of the electron with the donor

exceeds the precession period of the electron spin in the

hyperfine field of the nuclei. The width of the Hanle curve

for donor-bound electron spins is determined by the relatively

rapid precession in static nuclear fields [12,13], i.e., by the spin

dephasing time T ∗
2 , and not by the longitudinal spin relaxation

time T1 or τS , which are both equal to TS in the limit of

zero excitation density. T1 or τS can be much longer than

the precession period in the frozen nuclear field. Dephasing

in static fields is reversible and to eliminate their effect the

spin-echo method can be used [14]. However, this leads to a

complication of experiments on the irreversible spin dynamics,

designed to determine the T1 time. While the inhomogeneous

spin dephasing time T ∗
2 can be seen as a lower limit of the spin

coherence time T2, which is the important quantity for quantum

information technologies, the T1 time is used to estimate the

upper limit of T2 (T2 � 2T1) [15].
We propose a different approach to measure the spin

lifetime, which does not rely on the precession of the spins
in a magnetic field applied in the Voigt geometry. This
method uses an external clock instead of an internal one,
namely the periodic polarization modulation of the exciting
light with the modulation frequency fm, and exploits the
inertia of the spins: when switching the helicity of the light
the steady-state value of the electron spin polarization is
reached within the characteristic time TS . At low modulation
frequencies 2πfm ≪ 1/TS the electron spin polarization can
overcome the spin inertia and reach its steady-state value for
a particular laser polarization period. For high modulation
frequencies 2πfm � 1/TS , on the other hand, the electron
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spin polarization remains reduced since it cannot reach its
steady-state value within a duty cycle with fixed circular
polarization. The fall or rise of the spin polarization in
dependence on the modulation frequency corresponds to the
spin lifetime. With this method one can measure the spin
lifetime in a weak magnetic field, when the dynamics of the
average spin is determined by relaxation processes in random
fields that are not subject to dynamic averaging, i.e., when
the method based on the Hanle effect cannot provide the
time TS .

A similar method was used by Akimov et al. [16,17]

to study the electron spin dynamics in epitaxial CdSe/ZnSe

quantum dots. The method combines time- and polarization-

resolved measurements of the emission from the trion singlet

ground state with helicity modulation of the exciting light.

However, the spin polarization was not measured in depen-

dence of the modulation frequency by Akimov et al., so our

method can be seen as an advancement. Fras et al. performed

differential transmission measurements of InAs/GaAs quan-

tum dots using the optical pump-probe technique [18]. Here,

in addition to time-resolved measurements a technique called

dark-bright time scanning spectroscopy was used, where the

intensity of the exciting beam was modulated to measure in

the frequency domain. In contrast to this Colton et al.

measured the spin lifetime T1 in a modulation-doped (100)

GaAs/AlGaAs quantum well directly in the time domain by

employing a pump-probe technique with an electronically

controlled time delay between pump and probe [15]. This

scheme allowed very long delays up to the µs range.

In this paper we investigate the spin dynamics of the

strongly localized, donor-bound electrons in fluorine-doped

ZnSe epilayers in a wide range of magnetic fields, tempera-

tures, and pump densities using the spin inertia method. The

paper is organized as follows. Section II provides details of the

experimental techniques and the studied sample. Section III

describes the experimental results. Section IV is devoted to

the theoretical consideration of the spin inertia effect and the

modeling of the experimental data. The discussion of the spin

relaxation mechanisms is done in Sec. V. There we also assess

the applicability of the spin inertia method to various spin

systems.

II. EXPERIMENTAL DETAILS

The studied sample consists of three layers grown by

molecular-beam epitaxy on (001)-oriented GaAs substrate.

A thin ZnSe buffer layer reduces the strain induced by the

II-VI on III-V heteroepitaxy. The ZnSe layer is followed by a

20-nm-thick Zn1−xMgxSe, x < 0.15 barrier layer, which pre-

vents carrier diffusion into the substrate. The fluorine-doped,

70-nm-thick ZnSe epilayer is grown on top of this barrier layer.

It has a fluorine concentration of about 1 × 1015 cm−3. For the

optical properties of this sample and for information on the

electron spin dephasing we refer to Ref. [19].

The sample is placed in a vector magnet system consisting

of three superconducting split coils oriented orthogonally to

each other [20]. It allows us to switch the magnetic field from

the Faraday geometry (magnetic field BF parallel to the sample

growth axis and the light wave vector) to the Voigt geometry

(magnetic field BV perpendicular to the sample growth axis

FIG. 1. (Color online) PL spectra of the fluorine-doped ZnSe

epilayer measured at B = 0 T for T = 1.8 K.

and the light wave vector). The switching can be performed by

using the respective pairs of split coils and does not require any

changes of the optical alignment. Therefore we can measure

in different magnetic field geometries with exactly the same

adjustment and overlap of the pump and probe beams on the

sample. The measurements are performed at low temperatures

with the sample either immersed in pumped liquid helium

at T = 1.8 K or cooled with a controlled helium gas flow

(up to 45 K). Photoluminescence (PL) spectra for sample

characterization are excited using a continuous-wave (cw)

laser with a photon energy of 3.05 eV and detected with a

Si-based charge-coupled device (CCD) camera attached to a

0.5-m spectrometer.

We use the pump-probe technique to study the elec-

tron spin dynamics by time-resolved Kerr rotation (TRKR).

The electron spin coherence is created by circularly po-

larized pump pulses of 1.5 ps duration (spectral width

of about 1 meV) emitted by a mode-locked Ti:sapphire

laser operating at a repetition frequency of 75.7 MHz

(repetition period TR = 13.2 ns). The induced electron spin

coherence is measured by linearly polarized probe pulses

of the same photon energy as the pump pulses (degenerate

pump-probe scheme). A mechanical delay line is used to

scan the time delay between the probe and pump pulses. The

photon energy is tuned into resonance with the donor-bound

heavy-hole exciton (D0X-HH) at about 2.80 eV (see Fig. 1). To

obtain this photon energy a beta-barium borate (BBO) crystal

is used to double the frequency of the light generated by the

Ti:sapphire laser. The pump helicity is modulated between σ+

and σ− polarization by an electro-optical modulator (EOM),

so that on average the sample is equally exposed to left-

and right-circularly polarized pump pulses. The modulation

frequency is varied between 10 kHz and 700 kHz. The

photogenerated spin polarization results in a rotation of the

polarization plane of the reflected, initially linearly polarized

probe pulses due to the magneto-optical Kerr effect. The

Kerr rotation (KR) angle of the probe beam is measured by

a 10 MHz balanced photoreceiver with adjustable gain and

bandwidth, connected to a lock-in amplifier. The pump density

235432-2



LONGITUDINAL AND TRANSVERSE SPIN DYNAMICS OF . . . PHYSICAL REVIEW B 91, 235432 (2015)

is varied in the range Ppump = 0.2–4.2 W/cm2, which is low

enough to ensure a linear response of the KR amplitude to

the pump density and well below a π pulse. The probe density

(Pprobe) is about one order of magnitude smaller than the pump

density.

We use three different implementations of the pump-probe

Kerr rotation method:

(1) The time-resolved Kerr rotation configuration, where

the Kerr rotation angle is measured in dependence on

the time delay between the pump and probe pulses with the

magnetic field applied in the Voigt geometry. In this case the

Larmor precession of the electron spin polarization around

the magnetic field axis results in a signal which is a periodic

function of the time delay and whose amplitude decreases

with increasing time delay. Using this configuration one can

determine the g factor of the carriers and the inhomogeneous

spin dephasing times T ∗
2 in the limit T ∗

2 < TR [19].

(2) The resonant spin amplification (RSA) configura-

tion [4,21,22] is used to determine T ∗
2 when this time is

comparable to or greater than the laser repetition period TR.

Here the time delay between pump and probe is fixed at a

small negative value (�t ≈ −20 ps) and one measures the

KR angle in dependence on the magnetic field applied in the

Voigt geometry in the range from −20 to +20 mT. At certain

magnetic fields the electrons spins precess in phase with the

laser repetition frequency and one observes an increased Kerr

rotation signal.

(3) In the polarization recovery (PR) configuration the

electron spin polarization is also detected at a fixed, small

negative time delay. The KR signal is measured in dependence

of the magnetic field applied in the Faraday geometry. The

electron spin polarization, which is photogenerated along the

magnetic field direction, does not exhibit Larmor precession

then. Still it is decreased by the nuclear hyperfine fields, if

the external magnetic field is small compared to these fields.

The effect of the hyperfine fields is suppressed with increas-

ing external magnetic field. By varying the pump helicity

modulation frequency one can measure the longitudinal spin

relaxation time T1 of the electrons. We will mostly use this

implementation to study the spin dynamics of the donor-bound

electrons.
Note that the measurement of the KR signal at negative

time delay, prior to the pump pulse, used in the RSA and
PR configurations, greatly simplifies the interpretation of the
signal origin. These signals can only arise from long-living
spins, whose lifetime exceeds TR = 13.2 ns. This is typically
much longer than the exciton recombination time, so that the
measured signals can originate only from resident electrons,
which are bound to donors at low temperatures.

In addition, we also perform pump-probe experiments using

a cw pump and a pulsed probe. For these measurements a cw

Ti:sapphire laser with intracavity second harmonic generation

is used as the pump, and the probe pulses are generated

from the laser system described above. This configuration

allows us to set the pump and the probe laser at different

photon energies, i.e., to perform two-color nondegenerate

pump-probe measurements. Thereby we measure the PR and

the suppression of the KR signal in the Voigt geometry (the

Hanle curve), to investigate possible influences of pulsed

excitation on the spin relaxation.

III. EXPERIMENTAL RESULTS

Figure 1 shows the PL spectrum of the studied sample, mea-

sured at zero magnetic field for a temperature of T = 1.8 K.

The spectrum exhibits the following emission lines: Donor-

bound heavy-hole exciton (D0X-HH) at 2.7970–2.7997 eV,

free heavy-hole exciton (FX-HH) at 2.8045 eV, donor-bound

light-hole exciton (D0X-LH) at 2.8092 eV, and free light-hole

exciton (FX-LH) at 2.8167 eV. The strain induced by the

II-VI on III-V heteroepitaxy lifts the light-hole and heavy-hole

degeneracy [19].

Results of pump-probe measurements in all three experi-

mental configurations are illustrated in Fig. 2. Results obtained

with the TRKR and RSA configurations were considered in

detail in Ref. [19] and are given here for comparison with the

PR data. Furthermore, they provide important supplementary

information on the donor-bound electron spins.

Figures 2(a) and 2(b) show time-resolved Kerr rotation

signals measured at a temperature of T = 1.8 K for resonant

D0X-HH excitation. While the spectrum in Fig. 2(a) is

measured at zero external magnetic field, in Fig. 2(b) a

magnetic field of BV = 0.42 T is applied in the Voigt geometry

and the observed oscillations reflect the Larmor precession of

the electron spin polarization. Note that these oscillations are

long living and do not fully decay during the time interval

TR = 13.2 ns between subsequent pump pulses, as can be seen

from the considerable signal amplitude at negative time delays.

As has been reported in Ref. [19] the exciton lifetime in ZnSe is

shorter than 250 ps and the long-living TRKR signal originates

from the coherent spin precession of the localized donor-bound

FIG. 2. (Color online) TRKR results measured for resonant

D0X-HH excitation (2.7986 eV) at T = 1.8 K. (a) and (b) KR

signals in dependence on the time delay at fm = 50 kHz and

Ppump = 1.6 W/cm2. The arrow marks the time delay at which the

RSA and PR signals are detected. (c) PR and RSA signals measured

at fm = 75 kHz. (d) PR signals measured at different modulation

frequencies. In panels (c) and (d) Ppump = 0.5 W/cm2.
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electrons. The relatively large binding energy to these donors

of 29 meV [23] provides strong electron localization and

makes the spin coherence robust even at elevated temperatures

up to 40 K [19]. A g factor of the donor-bound electron of

|ge| = 1.13 ± 0.02 is evaluated from the period of the signal

oscillations in Fig. 2(b), see Ref. [19].

Due to the long decay of the TRKR signal amplitude it

is difficult to evaluate the electron spin dephasing time T ∗
2

by fitting the amplitude decay in these measurements. Instead

the RSA technique was used for that purpose; for details see

Ref. [19]. An example of a RSA signal is shown by the green

line in Fig. 2(c). It consists of periodic peaks with a width of

about 1 mT.

To extract the spin dephasing time around zero field from

these data the following equation is fitted to the measured

signal, using T ∗
2 as the only free fitting parameter [19,21]:

�KR(B) ∝ e
−

�t+TR
T ∗

2

cos(�L�t) − e
TR
T ∗

2 cos[�L(�t + TR)]

cos(�LTR) − cosh(TR/T ∗
2 )

.

(1)

Note that here we consider TS ≡ T ∗
2 . The time evaluated from

the best fit is T ∗
2 = 33 ns.

The polarization recovery signal measured for the same

experimental conditions as the RSA signal (only the magnetic

field geometry is changed from Voigt to Faraday) is shown in

Fig. 2(c) by the blue line. The PR curve has a minimum at zero

magnetic field, increases with increasing BF, and saturates at

fields exceeding 20 mT. Obviously, the polarization recovery is

caused by suppression of the depolarization of the electron spin

along the magnetic field direction. We tentatively relate the

depolarization around zero field to the effect of the fluctuating

nuclear hyperfine fields; more details will be given in the

discussion below.

As shown in Fig. 2(c), the amplitude of the zero RSA

peak is a little smaller than the amplitude of the neighboring

peaks. This may be due to the following factors: (1) A small,

additional magnetic field component perpendicular to BV can

lead to a reduction of the amplitude of the RSA peak at

zero field [20]. This component can occur if there is a small

inclination (about 1◦–2◦) of the sample plane with respect

to the k vector (either horizontally or vertically). (2) An

additional nuclear field induced at BV may also lead to a

reduction or an increase of the amplitude of the zero RSA

peak [24].

Figure 2(d) shows PR signals, measured for different pump

helicity modulation frequencies, fm, varied from 75 up to

250 kHz. The magnitude of the PR signal decreases for higher

fm, while the full width at half maximum (FWHM) of the

dip around the zero magnetic field of about 7.8 mT and the

overall shape of the PR curves remain the same. These findings

suggest that the inverse electron spin relaxation time falls in

the examined frequency range.

To study this in more detail the PR amplitude in dependence

on the modulation frequency is measured at BF = 5 mT for two

pump densities. The PR amplitude for both pump densities,

shown by the symbols in Fig. 3(a), remains constant for low

modulation frequencies on the order of a few 10 kHz, while it

rapidly decreases above 100 kHz. Model calculations shown

by the red lines [according to Eq. (11) in Sec. IV] allow us to

FIG. 3. (Color online) Spin dynamics measured with the PR

technique at BF = 5 mT for T = 1.8 K. (a) PR amplitude in

dependence on fm for two pump densities of 0.2 and 1.7 W/cm2.

Red lines show the fits to the data based on our theoretical model [see

Eq. (11) in Sec. IV], which is used to determine the spin lifetime TS .

(b) Inverse spin lifetime 1/TS in dependence on the pump density.

Red line represents a linear fit [see Eq. (2)] to the data, which is used

to extrapolate the spin relaxation time τS = 1.6 µs.

evaluate the spin lifetime TS = 1.5 µs for Ppump = 0.2 W/cm2

and TS = 1.0 µs for Ppump = 1.7 W/cm2. Note that the spin

lifetimes TS are on the order of the “cutoff frequency” of

100 kHz (1/TS ≈ 100 kHz) of the PR amplitude in dependence

on fm. The spin lifetime in dependence on the pump density

is plotted in Fig. 3(b). The decrease of the PR amplitude with

increasing fm is the key result of this study. In the following

we present details of its change with varying magnetic field

strength and temperature in order to obtain comprehensive

information on the spin dynamics of the donor-bound electrons

in ZnSe.

The blue circles in Fig. 4(a) illustrate the spin relaxation

time τS , determined with our model, in dependence on the

magnetic field, varied from zero to 20 mT. The black line

shows the corresponding PR signal at fm = 75 kHz. The

spin relaxation time remains constant within the accuracy of

our method in this BF range. The PR signal in an extended

magnetic field range up to 0.5 T is shown in Fig. 4(b). The

signal remains nearly constant in the magnetic field range

from 0.02 to 0.5 T. In this range its amplitude decreases

by a factor of 15, when fm is changed from 75 kHz to

400 kHz (note the multiplication factor of 5 in the figure).

For higher fields we perform measurements each 0.5 T in the

range 1.0–2.5 T. For each field four modulation frequencies

are examined [see Fig. 4(c)]. For all measured fm the PR

amplitude is independent of the magnetic field strength. Its

frequency dependence is fitted according to Eq. (11) using the

same fitting parameter TS = 1.1 µs for all measured magnetic

fields. An important experimental result of Fig. 4 is that the PR

amplitude in dependence on BF considerably increases from

zero to 20 mT, but then remains constant in the range from

20 mT up to 2.5 T.

The shape of the PR amplitude as function of the modulation

frequency is maintained in the temperature range from 1.8 up

to 45 K, as illustrated by the experimental data presented in

Fig. 5, where results for T = 1.8, 30, and 45 K are compared.

The PR amplitude decreases slightly by less than 40% for

elevated temperatures and has been normalized to T = 1.8 K
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FIG. 4. (Color online) Experimental results measured at T =

1.8 K. (a) Blue circles give the spin relaxation time τS in dependence

on the magnetic field. Black line shows a typical PR signal. Ppump =

1.7 W/cm2. (b) PR signals in dependence on BF for fm = 75 kHz

(blue line) and 400 kHz (green line, multiplied by factor of 5).

Ppump = 2.4 W/cm2. (c) Modulation frequency dependence of the

PR amplitude measured in different magnetic fields BF. Ppump =

2.4 W/cm2. Red line shows fit to the data according to Eq. (11)

with the fit parameter TS = 1.1 µs.

at 100 kHz. The shape of the frequency dependence remains

almost the same evidencing that the spin dynamics of the

donor-bound electrons does not change at T < 45 K.

FIG. 5. (Color online) PR amplitude in dependence on the mod-

ulation frequency measured at three different temperatures. Data are

normalized to each other at fm = 100 kHz. Ppump = 0.4 W/cm2. Red

line shows fit to the data at T = 1.8 K according to Eq. (11) with the

fit parameter TS = 1.5 µs.

The spin relaxation mechanism of optically oriented car-

riers may depend on whether cw or pulsed photoexcitation

is used. Excitation of spin systems with short pulses of

picosecond duration may induce perturbations assisting the

spin relaxation. We have measured the T1 time using a cw

pump and obtained the same results. We compared the shape

(width) of the PR curves and found it to be exactly the same.

Furthermore, we have measured the Hanle curve using a cw

pump. Its width is very close to the width of the RSA curve

which is a similar result to that in Ref. [25], where the influence

of a pulsed excitation was investigated for CdTe/(Cd,Mg)Te

quantum wells.

IV. THEORY

In this section we develop a theoretical approach to describe

the PR effect and its dependence on the pump helicity

modulation frequency and the pump density. It will be used to

model the experimental data and to determine the characteristic

times for the electron spin dynamics.

In n-type semiconductors the process of optical orientation

results from the replacement of unpolarized resident electrons

with photogenerated, spin-oriented electrons [5]. The electrons

lose their spin orientation due to spin relaxation with time

τS . Also their recombination with photogenerated holes will

reduce the macroscopic electron spin polarization. As a

result, the lifetime of the photogenerated electrons, τ = n0/G,

depends on the rate of electron-hole generation G, and on the

resident electron concentration n0. The spin lifetime TS ,

1/TS = 1/τ + 1/τS, (2)

determines the time until the steady-state spin polarization is

reached by optical pumping.

Although we use a pulsed laser, it will be treated as a cw

laser, since even at relatively high modulation frequencies,

e.g., fm = 200 kHz, the following relation holds:

1

fm

= 5 µs ≫ TR = 13.2 ns. (3)

Thus, the sample is exposed to almost 200 pump pulses of

each helicity during one modulation cycle, which can be

approximated by a cw excitation with the same average power

density.

In our experiment in the polarization recovery configuration

the pump helicity is modulated, so that the spin polarization

is switched between steady-state polarizations with opposite

signs. On the one hand, if the modulation frequency is so small

that the period with constant pump helicity is much longer than

the spin lifetime (2πfm ≪ 1/TS), the average spin polarization

seems to follow the pump polarization with negligible inertia

(see Fig. 6). On the other hand, if the pump helicity modulation

is so fast that the period with constant pump helicity is

comparable to or shorter than the spin lifetime (2πfm � 1/TS),

the spin polarization cannot reach its steady-state value and the

Kerr rotation signal is decreased significantly.

We consider the case when the electron spin polarization S

is generated along the z axis, i.e., when the light wave vector

of the pump laser is parallel to the z axis (k ‖ z). First, we

analyze the situation in the absence of static magnetic fields.

The following kinetic equation describes the dynamics of the
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FIG. 6. (Color online) Illustration of the effect of electron spin

inertia for pump helicity modulation with frequency fm. The red

and green lines show the limits of 2πfm ≪ 1/TS and 2πfm � 1/TS ,

respectively. (a) Illustration of the spin polarization Sz along the

direction of observation for two modulation periods: While in the

first case the spin polarization follows the laser polarization without

inertia and always reaches the steady-state value S0 in a fixed laser

polarization period, the spin polarization cannot reach S0 during such

a period, when the modulation is fast compared to the time scale given

by the spin lifetime TS . (b) Modulus of the spin polarization |Sz(t)|

for both limits. While in the first case (2πfm ≪ 1/TS , red line) |Sz|

is equal to |S0| almost during the whole modulation period except

for a small decrease, when the sign of the polarization is switched,

the modulus of the spin polarization is strongly decreased during the

whole modulation period for 2πfm � 1/TS .

electron spin polarization [5]:

dSz(t)

dt
=

Si − Sz(t)

τ
−

Sz(t)

τS

. (4)

The initially generated spin polarization Si = (0,0,Si) depends

on the laser polarization and optical selection rules. The first

term on the right side describes the polarization injection

(Si/τ ) and escape due to electron recombination (−Sz/τ ) with

time τ , and the second term describes the spin relaxation with

time τS .

The stationary solution for a constant circular polarization

of the pump is given by

Sz = S0 = Si

τS

τS + τ
= Si

GτS

GτS + n0

. (5)

For pump helicity modulation with the frequency fm we have

to solve the nonstationary Eq. (4). Combining Eqs. (2) and (4),

we find

dSz(t)

dt
=

S0(t) − Sz(t)

TS

. (6)

In our experiment S0(t) = Si(t)
τS

τ+τS
is an alternating signal of

rectangular pulses with a constant amplitude |S0|, a duty cycle

of 0.5, and the modulation frequency fm.

In the experiment we measure a signal, which is propor-

tional to n0Sz. The spin polarization along the direction of

observation Sz(t) is oscillating with the modulation frequency

fm. This means that we measure the following correlator:

L(fm) = 〈Sz(t) exp(i2πt/Tm)〉|Tm

=

Tm
∫

0

Sz(t) exp(i2πt/Tm)

Tm

dt. (7)

The averaging is done over the pump modulation period

Tm = 1/(2πfm). As a result, the task consists of two steps:

(i) determine Sz(t) and (ii) calculate the correlator according

to Eq. (7). The calculations show that the spin polarization

along the direction of observation, Sz(t), is a periodic function

with the period Tm of the pump helicity modulation

Sz(t) = |S0|

(

1 −
2e

− t
TS

1 + e
−

Tm
2TS

)

, (8)

in the half cycles in which S0(t) = +|S0|,

Sz(t) = |S0|

{

−1 + 2

(

e
Tm
2TS −

1

1 + e
−Tm
2TS

)

e
− 1

TS

}

, (9)

in the half cycles in which S0(t) = −|S0|. Hence it is possible

to determine the following correlator (7):

L(fm) = −
2n0|S0|

π (i + 2πfmTS)
. (10)

In the experiment the lock-in amplifier records the following

signal:

|L(fm)| =
2

π

n0|S0|
√

1 + (2πfmTS)2
. (11)

Figure 6 schematically illustrates the spin inertia effect and

shows how the dependence of the correlator on the modulation

frequency and the spin lifetime manifests itself in experiment.

Figure 6(a) shows the time-dependent spin polarization along

the direction of observation Sz(t) for two modulation periods.

In the case of slow modulation compared to the spin lifetime

(red line) the spin polarization follows the laser polarization

without significant inertia and always reaches the steady-state

value |S0| in a period of fixed laser polarization. However, the

spin polarization cannot reach |S0| during such a period, when

the modulation occurs fast compared to the spin lifetime TS

(green line). Note that the time-averaged spin polarization is

equal to zero in both cases. However, the lock-in amplifier

records the signal, which is proportional to the time-averaged

modulus |Sz| of the spin polarization [see Fig. 6(b)]. For

2πfm ≪ 1/TS (red line) this time-averaged value is very

close to |S0|, while it is clearly smaller than |S0| in the limit

2πfm � 1/TS . We denote this inability of the spin polarization

to follow the polarization of the exciting light for a fast

modulation compared to the spin lifetime as the spin inertia

effect.

Investigation of the carrier’s spin dynamics by the spin

inertia effect can be performed at zero as well as finite

external magnetic fields. In a magnetic field the evaluated

spin relaxation time τS corresponds to the longitudinal spin

relaxation time T1. It is also valid for samples in which the
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electron spins are affected by randomly oriented hyperfine

fields from the nuclear spin fluctuations [12,13], namely, when

the spin dephasing time T ∗
2 caused by the nuclear fluctuations is

considerably shorter than T1. Note that in this case the method

based on the Hanle effect is limited to measurements of the

T ∗
2 time, and not the T1 time. We discuss this in more detail in

Sec. V.

For example, in our fluorine-doped sample the donor-bound

electrons are strongly localized. Thus, the dwell time of

an electron on a donor is longer than the inhomogeneous

dephasing time T ∗
2 of the ensemble of donor-bound electrons in

the frozen hyperfine fields of the nuclei, BN. The components

of the electron spin perpendicular to the hyperfine field decay

during T ∗
2 , while the spin polarization along the hyperfine field

direction decays on a much longer time scale T1 ≫ T ∗
2 .

Note that strong static magnetic fields, either the homo-

geneous external magnetic field B or the randomly oriented

nuclear hyperfine fields BN at various donors, would not

change the frequency dependence of the signal in Eq. (11).

These fields can be accounted for by adding the precession

term �� × S to Eq. (6):

dS(t)

dt
=

S0(t) − S(t)

TS

+ �� × S. (12)

Here �� = µBgeB�/� is the Larmor frequency of the donor-

bound electron in the superposition of both fields B� = B +

BN. We can consider the nuclear field as static, when the dwell

time of the electron on the donor τd is long, so that τd�N ≫ 1,

where �N = µBgeBN/� is the Larmor frequency in the nuclear

field.

Equation (12) explicitly accounts for the contribution of the

randomly oriented, static hyperfine fields of the nuclei. But it

does not mean that other contributions to the electron spin

relaxation should be static. For example, spin-orbit, exchange,

or other interactions in the considered system can exhibit

fast fluctuations and their contribution should be described

using the relaxation time approximation. These mechanisms

are approximately described by the common spin lifetime

TS . In strong magnetic fields (TS�� ≫ 1) only the spin

component SB along the field B� is conserved. By scalar

multiplication of Eq. (12) with �� one can show that the z

component SB = (SB�)B�/B2
� corresponds exactly to Eq. (6)

in which one should replace Sz with SB,z and S0(t) with

SB,0(t) = S0(t)B2
�,z/B

2
� . As a result, we obtain the following

equation which is similar to Eq. (11) and describes the signal

measured with the lock-in amplifier:

|L(fm,B�)| =
2

π

n0|S0|
√

1 + (2πfmTS)2

〈

B2
�,z

B2
�

〉

. (13)

Here the angle brackets mean averaging over a Gaussian dis-

tribution of the hyperfine fields [12,13]. Comparing Eqs. (11)

and (13) one can see that the signal as a function of the

modulation frequency fm is the same, while in relatively

strong magnetic field the time TS can be a function of the

magnetic field, as the spin relaxation is accompanied by the

energy transfer equal to the Zeeman splitting of the electron

energy. Keep in mind that in the limit of weak excitation

densities TS(B) is equal to τS(B), which in turn is equal to

the longitudinal spin relaxation time T1(B). Therefore, one

can evaluate T1(B) from the frequency dependence of L(fm)

for any magnetic field.

In the limit of low modulation frequencies (2πfmTS ≪ 1)

the quasistatic Eq. (13) for the spin polarization is equal to

Eq. (27) from Ref. [13] for the polarization in dependence

on the magnetic field up to the constant coefficient. Contrary

to the frequency dependence, the signal in dependence on

the magnetic field L(B) does not have a simple analytical

form, but can be discussed qualitatively. At B = 0 the averaged

random distribution of the nuclear fields decreases the initial

polarization degree by a factor of 3 to Sz = S0/3 [26]. A

magnetic field in the Voigt geometry decreases the spin

polarization Sz due to the Larmor precession of the electron

spin (Hanle effect), while a magnetic field in the Faraday

geometry stabilizes the spin polarization (PR signal) by

suppressing the effect of the nuclear fields, which deviate

from the external magnetic field, on the electron spin. The

polarization as a function of magnetic field is characterized by

the half-width at either half maximum in Voigt geometry BV
1/2

or at half minimum in Faraday geometry BF
1/2. These fields are

controlled by the dispersion of the nuclear field δB and it is

expected that BV
1/2 = BF

1/2 [13]. The validity of this approach

for the description of the investigated system, the strongly

localized, donor-bound electron in fluorine-doped ZnSe, is

approved by the “1/3” rule, namely that the polarization at

zero field has 1/3 of its maximal value to which it can recover

in a strong magnetic field applied in the Faraday geometry; see

Fig. 2(c). However, the characteristic fields differ from each

other: BV
1/2 = 0.5 mT (from RSA width) and BF

1/2 = 3.9 mT

(from PR curve). The underlying mechanisms are the subject

of further investigations.

V. DISCUSSION

We interpret the decrease of the PR amplitude for increasing

modulation frequency, shown in Figs. 2(d) and 3(a), as a

decrease of the electron spin polarization due to the spin inertia

effect. The red lines in Fig. 3(a) are fits to the data according to

Eq. (11). From these fits we obtain spin lifetimes of TS = 1.5

and 1.0 µs for low and high pump density, respectively. The

pump density dependence of TS is described by Eq. (2).

Keeping in mind that τ = n0/G, one sees that for vanishing

pump rates G the term 1/τ → 0 and TS → τS . This provides

a way to measure the spin relaxation time τS . Figure 3(b)

shows the inverse spin lifetime 1/TS in dependence on the

pump density. From it we extrapolate τS = (1.6 ± 0.1) µs at

T = 1.8 K and BF = 5 mT.

The evaluated spin relaxation time τS in dependence on

the magnetic field is shown in Fig. 4(a) for the range of

weak magnetic fields BF < 20 mT. It is constant in this field

range at τS = 1.6 µs. Note in particular that it is also constant

below 5 mT where the electron spin polarization decreases

considerably due to the fluctuating nuclear magnetic field as

can be seen from the black line which shows the corresponding

PR signal at fm = 75 kHz. Furthermore, the results presented

in Figs. 4(a) and 4(c) suggest that the spin lifetime TS and,

correspondingly, the spin relaxation time τS do not depend

on BF in the whole range from zero up to 2.5 T. Note, that

this is a rather unexpected result as commonly the carrier

spin relaxation time is sensitive to the application of magnetic
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fields. Figure 5 demonstrates another surprising observation,

namely that the spin relaxation time does not depend on the

temperature in the range from 1.8 to 45 K.

Let us discuss possible spin relaxation mechanisms that

can be responsible for this behavior. For that we compare the

characteristic times of the electron spin dynamics determined

by the various techniques and discuss the spin relaxation

mechanisms which can describe the measured properties of

electron spins bound to fluorine donors in ZnSe. Comparing

the results of the different techniques we find that τS≫T ∗
2 ;

i.e., the characteristic time determined from the Hanle curve

T ∗
2 and the irreversible spin relaxation time τS determined

from the spin inertia method strongly differ. This can be

explained by the broadening of the Hanle curve due to the

nuclear spin fluctuations: The strongly localized, donor-bound

electrons in the fluorine-doped ZnSe epilayers interact with

the nuclear hyperfine field of the same nuclei for a long time

(τc � �/(µBgeBN)). The resulting Larmor precession in the

nuclear hyperfine field broadens the Hanle curve, so that the

spin lifetime obtained from the Hanle measurement is limited

by this reversible effect and is much shorter than the time for

the irreversible spin relaxation τS determined from the spin

inertia method.

Every mechanism of irreversible spin relaxation can be

interpreted as the effect of fluctuating magnetic fields on

the electron spin. Equation (4) is valid in the case of fastly

varying magnetic field τc≪τS , when dynamical averaging

takes place. In a strong magnetic field the relaxation times

of the longitudinal and transverse components T1 and T2

are different. The time T1 describes the decay of the spin

component along the magnetic field. This time can depend

considerably on the magnetic field, since the spin-flip requires

the transfer of the energy µBgeB to the lattice. On the contrary,

the time T2 describes the decoherence time, which is not related

to an energy transfer to the lattice. They become equal to each

other T1 = T2 = τS in a weak magnetic field [14]. The spin

relaxation time τS that we determine with the spin inertia

method with the magnetic field applied in Faraday geometry

is the T1 time.

For sufficiently strong longitudinal magnetic fields one

would expect a dependence of the spin relaxation time

on the magnetic field. However, we do not observe any

dependence of τS on the magnetic field from zero up to

2.5 T for the donor-bound electrons and only small variations

within the accuracy of our method in the temperature range

from 1.8 up to 45 K. This imposes severe restrictions on the

fluctuating magnetic fields, which can be used to describe the

spin relaxation process. Calculating the Zeeman splitting of

the electron states at an external magnetic field of B = 2.5 T

we can deduce that the fluctuations of the random magnetic

field describing the underlying relaxation mechanism must

have a wide frequency range µBgeB/� ≈ (3 ps)−1. Thus, the

correlation time of the corresponding fluctuating field must be

shorter than 3 ps.

The following, almost instantaneous processes can be con-

sidered: (i) scattering between free and donor-bound electrons

(the exchange interaction between the electrons is responsible

for the electron spin flip), (ii) jumping of electrons be-

tween different donors (hyperfine and spin-orbit interaction),

(iii) scattering of phonons by donor-bound electrons (spin-

orbit interaction), and (iv) charge fluctuations in the environ-

ment of the donors (spin-orbit interaction). All of them will be

discussed in the following.

The process (i) is unlikely, because the localized states

are excited resonantly and the donor ionization process should

depend on the temperature in the range from 30 to 50 K, which

does not reflect the experimental observations.

The process (ii) can be provided by two mechanisms:

electron spin flip-flop transitions, which are induced by the

scalar exchange interaction between electrons on neighboring

donors, and electron jumps of donor-bound electrons to

unoccupied donors. Calculations according to Ref. [27] for

the parameters of the fluorine donor in ZnSe yield a jump time

which is much longer than the estimated 3 ps. Thus, we discard

option (ii) as a possible mechanism.

We also discard the process (iii), since we do not observe

any temperature dependence of the spin relaxation time τS ,

which we would expect for a phonon-mediated process.

The only possible mechanism left is the process (iv), charge

fluctuations in the environment of the donors, which, e.g.,

might occur during the 1.5 ps duration of the laser pulse

illumination. We test this possibility by changing the pulsed

pump beam to cw excitation. However, the determined spin

relaxation time still does not depend on magnetic field or on

temperature in the specified range. According to this check

we can exclude a direct influence of the pulsed excitation on

the spin relaxation. However, we cannot completely disregard

any illumination-induced mechanism, as charge fluctuations

can be produced also by cw laser excitation in combination

with carrier recombination during tens of picoseconds [3].

Still, there is no clear evidence for this so that we suggest that

there may be a different, new mechanism, which determines

the spin relaxation time in this system with strong electron

localization.

VI. CONCLUSIONS

We have suggested a method based on the spin inertia

effect to measure the longitudinal spin relaxations time T1

of carriers. It exploits optical orientation of the carrier spins

and their polarization recovery in a magnetic field in the

Faraday geometry, measured for different helicity modulation

frequencies. The validity of this method is demonstrated for

electrons bound to fluorine donors in ZnSe. An electron spin

relaxation time of T1 = 1.6 µs is measured in the temperature

range 1.8–45 K. This time remains constant for magnetic fields

varied from zero to 2.5 T. Measurements of the spin dephasing

time T ∗
2 = 33 ns with the RSA technique, and a comparison of

pulsed and continuous-wave excitation, allow us to conclude

that the spin relaxation of the donor-bound electrons is caused

by perturbations that cover a broad spectral range. The question

about the origin of this perturbation has remained open so far

and needs further investigations.

The obvious advantage of the suggested polarization re-

covery technique based on the spin inertia effect is that it is

suitable for measuring the longitudinal spin relaxation time T1

in the whole range of magnetic field starting from zero field.

Contributions of different spin relaxation mechanisms may

be distinguished by their different onsets in the modulation
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frequency dependence. This distinction is possible when the

generated carrier spin polarization is not fully destroyed by a

faster relaxation mechanism. A requirement for the suggested

technique is the finite optical orientation of carriers (at least

of about a few percent that can be comfortably detected).

The photoinduced carrier spin polarization can be detected

by various methods, e.g., by Kerr or Faraday rotation or by

the circular polarization degree of photoluminescence. The

main limitation of the technique comes from the condition

that the pump helicity modulation period shall be tuned to a

time shorter than the spin lifetime TS . Therefore, the technique

can be well applied to measure long relaxation times, e.g., of

resident carriers, but it is less suited for fast-decaying excitons,

for example, whose typical recombination time is shorter than

a nanosecond, as it would require a modulation frequency

exceeding 1 GHz.
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