000202468 001__ 202468
000202468 005__ 20210129220131.0
000202468 0247_ $$2doi$$a10.1002/biot.201400786
000202468 0247_ $$2ISSN$$a1860-6768
000202468 0247_ $$2ISSN$$a1860-7314
000202468 0247_ $$2WOS$$aWOS:000354199700016
000202468 0247_ $$2altmetric$$aaltmetric:3767865
000202468 0247_ $$2pmid$$apmid:25755120
000202468 037__ $$aFZJ-2015-04682
000202468 041__ $$aEnglish
000202468 082__ $$a570
000202468 1001_ $$0P:(DE-Juel1)144533$$aKopka, Benita$$b0$$ufzj
000202468 245__ $$aPurification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile Lyase using a Family 2 carbohydrate-binding module
000202468 260__ $$aWeinheim$$bWiley-VCH$$c2015
000202468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457697400_320
000202468 3367_ $$2DataCite$$aOutput Types/Journal article
000202468 3367_ $$00$$2EndNote$$aJournal Article
000202468 3367_ $$2BibTeX$$aARTICLE
000202468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202468 3367_ $$2DRIVER$$aarticle
000202468 520__ $$aTedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems.
000202468 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000202468 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202468 7001_ $$0P:(DE-Juel1)144534$$aDiener, Martin$$b1$$ufzj
000202468 7001_ $$0P:(DE-Juel1)131563$$aWirtz, Astrid$$b2$$ufzj
000202468 7001_ $$0P:(DE-Juel1)131522$$aPohl, Martina$$b3$$ufzj
000202468 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b4$$ufzj
000202468 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b5$$eCorresponding Author$$ufzj
000202468 773__ $$0PERI:(DE-600)2214038-4$$a10.1002/biot.201400786$$gVol. 10, no. 5, p. 811 - 819$$n5$$p811 - 819$$tBiotechnology journal$$v10$$x1860-6768$$y2015
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.pdf$$yRestricted
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.gif?subformat=icon$$xicon$$yRestricted
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202468 8564_ $$uhttps://juser.fz-juelich.de/record/202468/files/811_ftp.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202468 909CO $$ooai:juser.fz-juelich.de:202468$$pVDB
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144533$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144534$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131563$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131522$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202468 9130_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000202468 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000202468 9141_ $$y2015
000202468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202468 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202468 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202468 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000202468 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202468 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000202468 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
000202468 980__ $$ajournal
000202468 980__ $$aVDB
000202468 980__ $$aI:(DE-Juel1)IBG-1-20101118
000202468 980__ $$aI:(DE-Juel1)IMET-20090612
000202468 980__ $$aUNRESTRICTED
000202468 981__ $$aI:(DE-Juel1)IMET-20090612