000202509 001__ 202509
000202509 005__ 20240709082128.0
000202509 037__ $$aFZJ-2015-04713
000202509 041__ $$aEnglish
000202509 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
000202509 1112_ $$aSeminar of the Physics Department$$cBozeman, Montana$$d2015-06-25 - 2015-06-25$$wUSA
000202509 245__ $$aFunctional Layers for Solid Oxide Fuel Cells Applied by Physical Vapor Deposition (PVD)$$f2015-06-25
000202509 260__ $$c2015
000202509 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1440501938_27017$$xOther
000202509 3367_ $$033$$2EndNote$$aConference Paper
000202509 3367_ $$2DataCite$$aOther
000202509 3367_ $$2DINI$$aOther
000202509 3367_ $$2BibTeX$$aINPROCEEDINGS
000202509 3367_ $$2ORCID$$aLECTURE_SPEECH
000202509 520__ $$aMetal-supported solid oxide fuel cells require application technologies for thin ceramic films at lower substrate temperatures compared to conventional ceramic sintering methods. Physical vapor deposition (PVD) was used to prepare gas-tight and porous functional layers, respectively, for Solid Oxide Fuel Cells. This work discusses the physical vapor deposition of perovskites with a nominal composition of La0.58Sr0.40Co0.2Fe0.8O3-delta for cathode layers, NiO/8YSZ anodes and YSZ/ CGO composite electrolytes with sub-micrometer layer thicknesses and lateral dimensions of up to 100 mm∙100 mm. Magnetron sputtering and electron beam evaporation were used as PVD techniques, with and without additional ion bombardment of the layers during deposition. The influence of the deposition parameters on the layer morphology and the electrochemical performance is studied by scanning electron microscopy analysis and current-voltage characterisation under fuel cell operation conditions, respectively.
000202509 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202509 7001_ $$0P:(DE-HGF)0$$aWeiler, Cornelia$$b1
000202509 7001_ $$0P:(DE-HGF)0$$aNédélec, Ronan$$b2
000202509 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$ufzj
000202509 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L.G.J.$$b4$$ufzj
000202509 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b5$$ufzj
000202509 909CO $$ooai:juser.fz-juelich.de:202509$$pVDB
000202509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202509 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202509 9141_ $$y2015
000202509 920__ $$lyes
000202509 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202509 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000202509 980__ $$atalk
000202509 980__ $$aVDB
000202509 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202509 980__ $$aI:(DE-Juel1)IEK-9-20110218
000202509 980__ $$aUNRESTRICTED
000202509 981__ $$aI:(DE-Juel1)IET-1-20110218
000202509 981__ $$aI:(DE-Juel1)IMD-2-20101013
000202509 981__ $$aI:(DE-Juel1)IEK-9-20110218