001     202509
005     20240709082128.0
037 _ _ |a FZJ-2015-04713
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Seminar of the Physics Department
|c Bozeman, Montana
|d 2015-06-25 - 2015-06-25
|w USA
245 _ _ |a Functional Layers for Solid Oxide Fuel Cells Applied by Physical Vapor Deposition (PVD)
|f 2015-06-25
260 _ _ |c 2015
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1440501938_27017
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a Other
|2 DINI
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
520 _ _ |a Metal-supported solid oxide fuel cells require application technologies for thin ceramic films at lower substrate temperatures compared to conventional ceramic sintering methods. Physical vapor deposition (PVD) was used to prepare gas-tight and porous functional layers, respectively, for Solid Oxide Fuel Cells. This work discusses the physical vapor deposition of perovskites with a nominal composition of La0.58Sr0.40Co0.2Fe0.8O3-delta for cathode layers, NiO/8YSZ anodes and YSZ/ CGO composite electrolytes with sub-micrometer layer thicknesses and lateral dimensions of up to 100 mm∙100 mm. Magnetron sputtering and electron beam evaporation were used as PVD techniques, with and without additional ion bombardment of the layers during deposition. The influence of the deposition parameters on the layer morphology and the electrochemical performance is studied by scanning electron microscopy analysis and current-voltage characterisation under fuel cell operation conditions, respectively.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Weiler, Cornelia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nédélec, Ronan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
|u fzj
700 1 _ |a de Haart, L.G.J.
|0 P:(DE-Juel1)129952
|b 4
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:202509
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 1
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-9-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21