000202512 001__ 202512
000202512 005__ 20240708132824.0
000202512 037__ $$aFZJ-2015-04716
000202512 041__ $$aEnglish
000202512 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
000202512 1112_ $$aLithium-Sulfur Seminar$$cBerlin$$d2015-06-03 - 2015-06-04$$wGermany
000202512 245__ $$aSolid-state electrolytes in Lithium-Sulfur Batteries$$f2015-06-03
000202512 260__ $$c2015
000202512 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1440504654_27024$$xOther
000202512 3367_ $$033$$2EndNote$$aConference Paper
000202512 3367_ $$2DataCite$$aOther
000202512 3367_ $$2DINI$$aOther
000202512 3367_ $$2BibTeX$$aINPROCEEDINGS
000202512 3367_ $$2ORCID$$aLECTURE_SPEECH
000202512 520__ $$aLithium ion conductors based on complex oxide materials are considered to be outstanding from their high safety and reasonable Li-ion conductivity. Compared to others solid Li ionic conductors, oxide materials have additional advantages of easier material handling during synthesis, higher chemical stability and wider electrochemical stability window. The high stiffness and electrochemically stability against metallic Li also make oxide-type Li-ion conductors as a perfect Li anode protector when using in Li-S or Li-air batteries. The use of Tantalum-substituted Li7-xLa3Zr2O12 (LLZ:Ta) as solid electrolyte for solid-state battery has been reported in several papers. The reported solid-state batteries were all constructed with a thin film cathode which was made either by physical vapor or sol-gel deposition [1-2]. In order to realize a Li-ion battery based on an oxide conductor as solid electrolyte, LLZ:Ta powder was synthesized via different synthesis routes including solid-state reaction. LLZ:Ta pellets with optimized sintering parameters exhibit a high Li-ion conductivity of 7.8 x 10-4 S cm-1 at 30 oC with a relative density of ~94%. The material was further implanted as a solid electrolyte by using screen printing to put on thick LiCoO2 (> 50 micrometers) as cathode and subsequently tested versus Li metal.Thin-film solid-state batteries allow – on the one hand – a detailed analysis of the compatibility of active storage material and the electrolyte because of well-defined interfaces. On the other hand, thin-film oxide electrolytes might also have the potential for application as thin Li-ion conductive solid-sate separators on porous substrates in Li-S- batteries.[1] M. Kotobuki et al, Ceramics International 39 (2013) 6481[2] Y. Jin et al, J. Power Sources 239 (2013) 326
000202512 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202512 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000202512 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2$$ufzj
000202512 7001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b3$$ufzj
000202512 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000202512 909CO $$ooai:juser.fz-juelich.de:202512$$pVDB
000202512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202512 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202512 9141_ $$y2015
000202512 920__ $$lyes
000202512 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202512 980__ $$atalk
000202512 980__ $$aVDB
000202512 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202512 980__ $$aUNRESTRICTED
000202512 981__ $$aI:(DE-Juel1)IMD-2-20101013