000202519 001__ 202519
000202519 005__ 20240708132824.0
000202519 037__ $$aFZJ-2015-04723
000202519 041__ $$aEnglish
000202519 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
000202519 1112_ $$a2. Sino-German workshop on All Solid State Batteries$$cKarlsruhe$$d2015-04-19 - 2015-04-22$$wGermany
000202519 245__ $$aManufacturing and Performance of all solid-state thin-film batteries
000202519 260__ $$c2015
000202519 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1440512703_27020
000202519 3367_ $$033$$2EndNote$$aConference Paper
000202519 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000202519 3367_ $$2ORCID$$aOTHER
000202519 3367_ $$2DRIVER$$aconferenceObject
000202519 3367_ $$2BibTeX$$aINPROCEEDINGS
000202519 520__ $$aThe combination of solid ceramic-like electrolytes with inorganic electrodes, thus creating an all solid-state battery, requires a sophisticated co-processing, taking into account different chemical and thermal stability of the applied materials. Thin-film batteries allow – on the one hand – a detailed analysis of the compatibility of active storage material and the electrolyte because of well-defined interfaces. On the other hand, thin-film batteries also have the potential for energy storage solutions in applications with short-term or low power consumption. Optionally, a stacking of active thin layers can increase the energy content.  In general, the deposition of a functional layer for solid-state battery cells requires a heat incidence that can lead to an undesired and detrimental diffusion of constituents into the substrate or into adjacent layers, to mechanical stresses and resulting cracks due to different coefficients of thermal expansion, or even to a decomposition of parts of the battery. This work presents how different materials (for instance Lithium-oxynitride (LiPON)  based or Lithium-Lanthanum-Zirconium-oxide (LLZ) based electrolyte materials) and different thin-film deposition processes (for example physical vapor deposition, spin-coating, dip-coating, ink-jet-printing) have impact on the microstructure, the inter diffusion and, as a result, on the performance of the cells. Analysis was done, among others, by high-resolution scanning electron microscopy, secondary ion mass spectrometry, optical emission spectroscopy, nuclear reaction analysis, Rutherford backscattering, electrochemical impedance spectroscopy, galvanostatic charge-discharge measurements and cyclic voltammetry.As an outlook, the economic feasibility of thin-film deposition technologies like physical vapor deposition is discussed.
000202519 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000202519 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202519 7001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b1$$ufzj
000202519 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2$$ufzj
000202519 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b3$$ufzj
000202519 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b4$$ufzj
000202519 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b5$$ufzj
000202519 7001_ $$0P:(DE-Juel1)140492$$aBitzer, Martin$$b6$$ufzj
000202519 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, Jürgen$$b7$$ufzj
000202519 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b8$$ufzj
000202519 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9$$ufzj
000202519 909CO $$ooai:juser.fz-juelich.de:202519$$pVDB
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140492$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129189$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000202519 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000202519 9141_ $$y2015
000202519 920__ $$lyes
000202519 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202519 980__ $$aabstract
000202519 980__ $$aVDB
000202519 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202519 980__ $$aUNRESTRICTED
000202519 981__ $$aI:(DE-Juel1)IMD-2-20101013