001     202519
005     20240708132824.0
037 _ _ |a FZJ-2015-04723
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 2. Sino-German workshop on All Solid State Batteries
|c Karlsruhe
|d 2015-04-19 - 2015-04-22
|w Germany
245 _ _ |a Manufacturing and Performance of all solid-state thin-film batteries
260 _ _ |c 2015
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1440512703_27020
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The combination of solid ceramic-like electrolytes with inorganic electrodes, thus creating an all solid-state battery, requires a sophisticated co-processing, taking into account different chemical and thermal stability of the applied materials. Thin-film batteries allow – on the one hand – a detailed analysis of the compatibility of active storage material and the electrolyte because of well-defined interfaces. On the other hand, thin-film batteries also have the potential for energy storage solutions in applications with short-term or low power consumption. Optionally, a stacking of active thin layers can increase the energy content. In general, the deposition of a functional layer for solid-state battery cells requires a heat incidence that can lead to an undesired and detrimental diffusion of constituents into the substrate or into adjacent layers, to mechanical stresses and resulting cracks due to different coefficients of thermal expansion, or even to a decomposition of parts of the battery. This work presents how different materials (for instance Lithium-oxynitride (LiPON) based or Lithium-Lanthanum-Zirconium-oxide (LLZ) based electrolyte materials) and different thin-film deposition processes (for example physical vapor deposition, spin-coating, dip-coating, ink-jet-printing) have impact on the microstructure, the inter diffusion and, as a result, on the performance of the cells. Analysis was done, among others, by high-resolution scanning electron microscopy, secondary ion mass spectrometry, optical emission spectroscopy, nuclear reaction analysis, Rutherford backscattering, electrochemical impedance spectroscopy, galvanostatic charge-discharge measurements and cyclic voltammetry.As an outlook, the economic feasibility of thin-film deposition technologies like physical vapor deposition is discussed.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Gehrke, Hans-Gregor
|0 P:(DE-Juel1)162280
|b 1
|u fzj
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 2
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
|u fzj
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 4
|u fzj
700 1 _ |a Bünting, Aiko
|0 P:(DE-Juel1)145805
|b 5
|u fzj
700 1 _ |a Bitzer, Martin
|0 P:(DE-Juel1)140492
|b 6
|u fzj
700 1 _ |a Dornseiffer, Jürgen
|0 P:(DE-Juel1)129189
|b 7
|u fzj
700 1 _ |a Van Gestel, Tim
|0 P:(DE-Juel1)129669
|b 8
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 9
|u fzj
909 C O |o oai:juser.fz-juelich.de:202519
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162280
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145805
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)140492
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129189
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129669
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21