000020254 001__ 20254
000020254 005__ 20210129210744.0
000020254 0247_ $$2pmid$$apmid:22378806
000020254 0247_ $$2pmc$$apmc:PMC3350696
000020254 0247_ $$2DOI$$a10.1098/rspb.2011.2651
000020254 0247_ $$2WOS$$aWOS:000304453000005
000020254 0247_ $$2altmetric$$aaltmetric:631935
000020254 037__ $$aPreJuSER-20254
000020254 041__ $$aeng
000020254 082__ $$a570
000020254 084__ $$2WoS$$aBiology
000020254 084__ $$2WoS$$aEcology
000020254 084__ $$2WoS$$aEvolutionary Biology
000020254 1001_ $$0P:(DE-HGF)0$$aWilts, B.D.$$b0
000020254 245__ $$aBrilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis
000020254 260__ $$aLondon$$bThe Royal Society$$c2012
000020254 29510 $$a.
000020254 300__ $$a2524 - 2530
000020254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020254 3367_ $$2DataCite$$aOutput Types/Journal article
000020254 3367_ $$00$$2EndNote$$aJournal Article
000020254 3367_ $$2BibTeX$$aARTICLE
000020254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020254 3367_ $$2DRIVER$$aarticle
000020254 440_0 $$025564$$aProceedings of the Royal Society B$$v279$$y1738
000020254 500__ $$aWe thank H. L. Leertouwer and A. J. M. Vey for collaboration and P. Vukusic for reading an early version of this manuscript. This study was financially supported by AFOSR/EOARD (grant FA8655-08-1-3012) and NCF, The Netherlands.
000020254 520__ $$aThe neotropical diamond weevil, Entimus imperialis, is marked by rows of brilliant spots on the overall black elytra. The spots are concave pits with intricate patterns of structural-coloured scales, consisting of large domains of three-dimensional photonic crystals that have a diamond-type structure. Reflectance spectra measured from individual scale domains perfectly match model spectra, calculated with anatomical data and finite-difference time-domain methods. The reflections of single domains are extremely directional (observed with a point source less than 5°), but the special arrangement of the scales in the concave pits significantly broadens the angular distribution of the reflections. The resulting virtually angle-independent green coloration of the weevil closely approximates the colour of a foliaceous background. While the close-distance colourful shininess of E. imperialis may facilitate intersexual recognition, the diffuse green reflectance of the elytra when seen at long-distance provides cryptic camouflage.
000020254 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000020254 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000020254 588__ $$aDataset connected to Web of Science, Pubmed
000020254 65320 $$2Author$$astructural colour
000020254 65320 $$2Author$$aphotonic bandgap materials
000020254 65320 $$2Author$$ascatterometry
000020254 65320 $$2Author$$adiffuse reflection
000020254 65320 $$2Author$$acommunication
000020254 650_2 $$2MeSH$$aAnimals
000020254 650_2 $$2MeSH$$aBeetles: chemistry
000020254 650_2 $$2MeSH$$aBeetles: physiology
000020254 650_2 $$2MeSH$$aBeetles: ultrastructure
000020254 650_2 $$2MeSH$$aBehavior, Animal
000020254 650_2 $$2MeSH$$aComputer Simulation
000020254 650_2 $$2MeSH$$aCrystallization
000020254 650_2 $$2MeSH$$aMicroscopy, Electron, Transmission
000020254 650_2 $$2MeSH$$aPhotons
000020254 650_2 $$2MeSH$$aPigmentation
000020254 650_2 $$2MeSH$$aRefractometry
000020254 650_2 $$2MeSH$$aWing: chemistry
000020254 650_2 $$2MeSH$$aWing: ultrastructure
000020254 650_7 $$2WoSType$$aJ
000020254 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$uFZJ
000020254 7001_ $$0P:(DE-HGF)0$$aKuipers, J.$$b2
000020254 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b3
000020254 7001_ $$0P:(DE-HGF)0$$aStavenga, D.G.$$b4
000020254 773__ $$0PERI:(DE-600)1460975-7$$a10.1098/rspb.2011.2651$$gVol. 279, p. 2524 - 2530$$p2524 - 2530$$q279<2524 - 2530$$tProceedings of the Royal Society of London / B$$v279$$x0962-8452$$y2012
000020254 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350696
000020254 909CO $$ooai:juser.fz-juelich.de:20254$$pVDB
000020254 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000020254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020254 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020254 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020254 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020254 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000020254 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000020254 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000020254 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000020254 9141_ $$y2012
000020254 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000020254 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x2
000020254 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000020254 970__ $$aVDB:(DE-Juel1)135515
000020254 980__ $$aVDB
000020254 980__ $$aConvertedRecord
000020254 980__ $$ajournal
000020254 980__ $$aI:(DE-Juel1)JSC-20090406
000020254 980__ $$aUNRESTRICTED