001     202571
005     20240711085701.0
024 7 _ |a 10.1016/j.memsci.2015.05.065
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a 2128/8957
|2 Handle
024 7 _ |a WOS:000358433600048
|2 WOS
037 _ _ |a FZJ-2015-04770
082 _ _ |a 570
100 1 _ |a Deibert, Wendelin
|0 P:(DE-Juel1)144923
|b 0
|e Corresponding author
245 _ _ |a Preparation and sintering behaviour of La$_{5.4}$WO$_{12−δ}$ asymmetric membranes with optimised microstructure for hydrogen separation
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1466149706_27110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a La5.4WO12−δ (LaWO) is a promising membrane candidate for a variety of H2-related applications due to its appreciable levels of mixed proton–electron conduction and its stability in moist reducing atmospheres at elevated temperatures. Governed by Wagner theory, the H2 permeation performance of a membrane can be enhanced by reducing its thickness. Therefore, the present work deals with preparing LaWO supported membranes with reduced thickness and optimised microstructure. Combining a dense membrane with a porous supporting layer is associated with mismatched sintering rates, which ultimately lead to bending effects. Therefore, the sintering behaviour of both the dense membrane and the porous substrate must be carefully adjusted to each other. For this purpose, single and co-fired membrane and substrate layers were produced by tape casting. Sintering experiments were carried out with an optical dilatometer. The shrinkage and microstructural evolution of the layers were evaluated in terms of the anisotropic shrinkage forces and the membrane rigidness counteracting the substrate shrinkage. The results were used to develop asymmetric LaWO membranes with optimal microstructure. High membrane density was combined with a substrate porosity of ~30% and minimised bending (40 µm). The LaWO membrane–substrate assembly displayed a He leakage of 10−5 hPa dm³ cm−2 s−1, which is a value that satisfies further practical demands.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 1
|e Corresponding author
700 1 _ |a Meulenberg, Wilhelm A.
|0 P:(DE-Juel1)129637
|b 2
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
773 _ _ |a 10.1016/j.memsci.2015.05.065
|g Vol. 492, p. 439 - 451
|0 PERI:(DE-600)1491419-0
|p 439 - 451
|t Journal of membrane science
|v 492
|y 2015
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202571/files/1-s2.0-S0376738815005037-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202571
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144923
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21