000202604 001__ 202604
000202604 005__ 20210129220150.0
000202604 0247_ $$2doi$$a10.3762/bjnano.6.147
000202604 0247_ $$2Handle$$a2128/8956
000202604 0247_ $$2WOS$$aWOS:000357017200001
000202604 037__ $$aFZJ-2015-04803
000202604 082__ $$a620
000202604 1001_ $$0P:(DE-HGF)0$$aPaßens, Michael$$b0
000202604 245__ $$aEnhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions
000202604 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2015
000202604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1436439752_18811
000202604 3367_ $$2DataCite$$aOutput Types/Journal article
000202604 3367_ $$00$$2EndNote$$aJournal Article
000202604 3367_ $$2BibTeX$$aARTICLE
000202604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202604 3367_ $$2DRIVER$$aarticle
000202604 520__ $$aDisordered and uniform (2√3 × 2√3)R30° superstructures of fullerenes on the Au(111) surface have been studied using scanning tunneling microscopy and spectroscopy. It is shown that the deposition and growth process of a fullerene monolayer on the Au(111) surface determine the resulting superstructure. The supply of thermal energy is of importance for the activation of a Au vacancy forming process and thus, one criterion for the selection of the respective superstructure. However, here it is depicted that a vacancy–adatom pair can be formed even at room temperature. This latter process results in C60 molecules that appear slightly more bright in scanning tunnelling microscopy images and are identified in disordered (2√3 x 2√3)R30° superstructures based on a detailed structure analysis. In addition, these slightly more bright C60 molecules form uniform (2√3 x 2√3)R30° superstructures, which exhibit intermolecular interactions, likely mediated by Au adatoms. Thus, vacancy–adatom pairs forming at room temperature directly affect the resulting C60 superstructure. Differential conductivity spectra reveal a lifting of the degeneracy of the LUMO and LUMO+1 orbitals in the uniform (2√3 x 2√3)R30° superstructure and in addition, hybrid fullerene–Au(111) surface states suggest partly covalent interactions.
000202604 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000202604 588__ $$aDataset connected to CrossRef
000202604 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b1
000202604 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b2$$eCorresponding author$$ufzj
000202604 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.6.147$$gVol. 6, p. 1421 - 1431$$p1421 - 1431$$tBeilstein journal of nanotechnology$$v6$$x2190-4286$$y2015
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.pdf$$yOpenAccess
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.gif?subformat=icon$$xicon$$yOpenAccess
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202604 8564_ $$uhttps://juser.fz-juelich.de/record/202604/files/2190-4286-6-147.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202604 909CO $$ooai:juser.fz-juelich.de:202604$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202604 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000202604 9141_ $$y2015
000202604 915__ $$0LIC:(DE-HGF)CCBY2$$2HGFVOC$$aCreative Commons Attribution CC BY 2.0
000202604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202604 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202604 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202604 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202604 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000202604 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000202604 9801_ $$aFullTexts
000202604 980__ $$ajournal
000202604 980__ $$aVDB
000202604 980__ $$aFullTexts
000202604 980__ $$aUNRESTRICTED
000202604 980__ $$aI:(DE-Juel1)PGI-7-20110106
000202604 980__ $$aI:(DE-82)080009_20140620