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Abstract

Wireless sensor network technology has recently been used for high spatial and temporal
resolution soil water content measurements to facilitate better understanding of hydrological
processes in catchment scale. Its performance strongly depends on the quality of the sensors
and the number of sensor nodes. In the first paper, the newly developed SPADE soil water
content sensor was calibrated using a two-step laboratory-based procedure using dielectric
reference liquids. The sensor accuracy was evaluated in terms of sensor-to-sensor variability
and temperature effect. Using sensor-specific calibration significantly improved the
estimation of apparent dielectric permittivity as compared to using a universal calibration
function. The transferability of the temperature correction function from reference liquids to
soils was successful and has been verified with undisturbed soil samples. A site-specific
petrophysical model (complex refraction index model, CRIM) was used to convert apparent
dielectric permittivity into soil water content using 15 soil samples from the Rollesbroich
catchment, with RMSE values of 0.028, 0.025, and 0.022 cm’cm™ for 5, 20, and 50 cm,

respectively.

In the second paper, a two-year time series in-situ soil water content from a wireless sensor
network deployed in the Rollesbroich catchment was analyzed in terms of spatial variability
using the mean relative difference (MRD) of the soil water content and saturation degree. The
MRDs were also used to explore the potential controls of hydraulic properties on the spatial
variability of soil water content at the catchment scale. To this end, hydraulic properties were
estimated by inverse modeling using the physically-based soil water model Hydrus-1D and
the global optimization algorithm SCE. Correlations between van Genuchten-Mualem
(VGM) parameters were used as prior information for the parameter optimization. These

hydraulic properties were derived from texture information and the Rosetta pedotransfer
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function. Soil texture was determined from soil samples taken in the Rollesbroich catchment
using standard laboratory procedures. The inverse Hydrus-1D model was able to reproduce
the observed time series of soil water content at 41 locations and three depths with RMSE
smaller than 0.08 cm’cm™ and R? larger than 0.75. The MRDs of soil water content and
saturation degree were found to be positively correlated with the VGM parameters 65 and n,

and to be negatively correlated with the VGM parameters o and K.

In the third paper, a new closed-form expression of soil water variability was developed to
explore the relationship between standard deviation (oy) and mean of soil water content
(<6>). The novel closed-form expression is based on the VGM model and uses stochastic
theory of 1D unsaturated gravitational water flow in soils. A sensitivity study of the closed-
form expression revealed that the »n parameter has the strongest effect on the oy(<6>)
relationship, followed by the parameters Kj, 6, and a. The closed-form expression was used
to estimate op(<6>) using information on percentages of sand, silt, and clay content, and bulk
density from datasets of eight test sites with varying soil properties, vegetation, climate
conditions and topographies. Six out of eight datasets showed good agreement between
observed and predicted ay(<6>) with R*-values ranging between 0.55 and 0.84. Furthermore,
The closed-form expression was successfully used to estimate the variability of hydraulic
properties from observed ay(<0>) data, with R*-values ranging between 0.69 and 0.88. It is
anticipated that an improved understanding of the gy(<6>) pattern provides better insight for
an improved upscaling of point-scale information to scales required for climate or

hydrological modeling.
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Kurzzusammenfassung

Funkbasierte Sensornetzwerke werden in jiingerer Zeit zur Messung des Bodenwassergehalts
in hoher zeitlicher und rdumlicher Aufldsung verwendet, um zu einem verbesserten
Verstdndnis von hydrologischen Prozessen auf der Einzugsgebietsskala zu gelangen. Die
Effizienz von Sensornetzwerken héngt von der Qualitit der verwendeten Sensoren und die
Anzahl der Sensorknoten ab. In der ersten Verdffentlichung wurde der neu entwickelte
SPADE Sensor mithilfe eines zweistufigen Verfahrens im Labor mittel dielektrischen
Referenz-Fliissigkeiten kalibriert. Der Sensor wurde hinsichtlich der Sensor-zu-Sensor
Variabilitdt und Temperatureffekte evaluiert. Es konnte gezeigt werden, dass eine Sensor-
spezifische Kalibration erhohte deutliche die Messgenauigkeit bei der Bestimmung der
dielektrischen Permittivitdt im Vergleich zu einer universellen Kalibrationsfunktion. Die
Ubertragung der Temperaturfunktion konnte erfolgreich von den Referenzfliissigkeiten auf
Bodenmaterial iibertragen werden. Das petrophysikalische Modell CRIM (complex refraction
index model) wurde erfolgreich eingesetzt, um mit dem SPADE Sensor gemessene
dielektrischen Permittivitit in volumetrischen Wassergehalt umzurechnen (15 Bodenproben
aus dem Rollesbroich Einzugsgebiet mit RMSE von 0.028, 0.025 und 0.022 cm’cm™ fiir

Bodentiefen von 5, 20 und 50cm.

In der zweiten Verdffentlichung, wurde Bodenfeuchte-Zeitreihen gemessen mit einem
Sensornetzwerk installiert in dem Rollesbroich Einzugsgebiet hinsichtlich der zeitlichen
Stabilitdt untersucht. Hierzu wurden MRDs (mean relative difference) der Wassergehélter
und der Séattigungsgrade ermittelt. Die MRDs wurden weiterhin dazu verwendet, die
Einfliisse von hydraulischen Eigenschaften auf die rdumliche Variabilitdt der Bodenfeuchte

auf der Einzugsgebietsskala zu untersuchen. Hierzu wurde hydraulische Eigenschaften
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mittels inverser Modellierung der Bodenfeuchtezeitreihen unter Verwendung des
physikalisch basierten Bodenwassermodell Hydrus-1D und dem globalen Optimierungs-
Algorithmus SCE ermittelt. Die Korrelationen zwischen den Parametern des van Genuchten-
Mualem (VGM) Modells wurden als Vorabinformation fiir die Parameterschitzung
verwendet. Diese hydraulischen Eigenschaften wurden zuvor aus Texturdaten mittels der
Pedotranferfunktion Rosetta berechnet. Die Texturdaten wurden von Bodenproben aus dem
Rollesbroich Einzugsgebiet mit standardisierten Labormethoden ermittelt. Das inverse
Hydrus-1D Modell war in der Lage, die gemessenen Bodenfeuchtezeitreihen von 41
Messstellen und drei Messtiefen mit einem RMSE kleiner als 0.08 cm’cm™ und einem R?
grofer als 0.75 zu simulieren. Die MRDs der Bodenfeuchte und des Sattigungsgrads mit den
VGM Parametern korreliert (positive Korrelation mit §; und n; negative Korrelation mit o

and Kj).

In der dritten Veroffentlichung wurde ein neues geschlossenes Gleichungssystem (closed-
form expression of soil water variability) zur Untersuchung der Beziehung zwischen der
Standardabweichung (oy) und mittlerer Bodenfeuchte (<6>) entwickelt. Das geschlossene
Gleichungssystem basiert auf das VGM Modell und der stochastischen Theorie of 1D
ungesittigten gravitativen Wasserfluss im Boden. Eine Sensitivititsanalyse des
geschlossenen Gleichungssystems zeigte, dass der n Parameter den grofiten Einfluss auf die
09(<60>) Beziehung hat, gefolgt von K, 05, and a. Das geschlossene Gleichungssystem wurde
dann dazu benutzt, um die 0y(<0>) Bezichung aus Textur- und Bodendichteinformationen
von acht Testgebieten mit unterschiedlichen Bodeneigenschaften, Vegetationsbedeckungen,
klimatischen Bedingungen und topographischen Verhiltnissen abzuschétzen. Sechs der acht
Datensitze zeigten eine sehr gute Ubereinstimmung mit beobachteter und vorhergesagter

00(<0>) (R? zwischen 0.55 und 0.84). Weiterhin wurde das geschlossene Gleichungssystem
v



erfolgreich dazu benutzt, die Variabilitit von hydraulischen Bodeneigenschaften aus
beobachten ay(<#>) Daten zu schitzen (R* zwischen 0.69 und 0.88). Es ist zu erwarten, dass
dieses verbesserte Verstindnis iiber die oyp(<6>) Beziechung das Heraufskalieren von
Punktinformation auf Skalen, die fiir die Modellierung von hydrologischen Systemen und

Klima benétigt werden, unterstiitzen wird.
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Chapter 1

1 General Introduction

Soil water content is fundamental importance to many hydrological, biological and
biogeochemical processes (Bittelli, 2011; Robinson et al., 2008). It is the key state variable in
the soil, vegetation and atmosphere continuum as it directly influences the exchange of water
and energy between land surface and atmosphere through evaporation and plant transpiration.
Regional soil water content patterns are influencing the generation of weather and
precipitation patterns (Teuling and Troch, 2005). Moreover, knowledge about soil water
content dynamics is valuable to a wide range of application, e.g. for government agencies and
private companies concerned with weather and climate (Seneviratne et al., 2010), runoff and
flood control (Castillo et al., 2003; Smith et al., 2002; Wang and Zhu, 2003), soil erosion and
slope failure (Wang and Zhu, 2003), reservoir management (Eltahir, 1998), precision
agriculture (Sudduth et al., 2001; Zhang et al., 2002), geotechnical engineering (Fredlund,

2000), and water provision (Betts et al., 1996).

There existing different measurement techniques to determine soil water content across a
broad range of scale, e.g. from point scale to regional scale (Robinson et al., 2008; Vereecken
et al., 2014; Western et al., 2002). The most commonly used techniques to measure soil water
content at point scale were using gravimetric sampling, time domain reflectometry (TDR),
capacitance sensors, and neutron probes (Qu et al., 2013; Robinson et al., 1999; Robinson et
al., 2003; Rosenbaum et al., 2011). However, these ground based method are too labor
intensive to remain feasible with increasing space/time sampling frequency. Remote sensing
enables the measurement soil water content at large scales with a single instrument on a
mobile platform and eliminates errors introduced by sensor-to-sensor variability (Montzka et

al., 2011; Montzka et al., 2013). However, remote sensing technology is only sensitive to the
1
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upper few centimeters of soil because the emitting depths penetration depth is approximately
5 cm. In addition, it is more susceptible to the effects of vegetation and surface roughness
(Robinson et al., 2008; Vereecken et al., 2008). Consequently, with the growing interest in
watershed observations, we consider to measure spatial temporal soil water content and to
describe soil water content patterns in catchment scale. Wireless sensor network technology
is an ideally technique provides continuous measurements of soil water content with high
spatial and temporal resolution at an intermediate scale (Bogena et al., 2010; Hiibner et al.,

2009; Rosenbaum et al., 2012).

Terrestrial Environmental Observation (TERENO) is the platform that establishes a
structured network of hierarchically organized multi-compartments measurement and
observation platforms that use state of the art observation and measurement technologies
(Bogena et al., 2012; TERENO, 2012; Zacharias et al., 2011). The different spatial and
temporal scales observation networks of TERENO aims at to detect and quantify both short
and long term effects and impacts on the terrestrial systems. The intensive observation
wireless sensor network allows us the real-time soil water content and temperature
monitoring with a high spatial and temporal resolution for the observing hydrological

processes in the catchment.

The wireless sensor network technology uses the low-cost ZigBee radio network for
communication and a hybrid topology with a mixture of underground end devices each wired
to several soil sensors and aboveground router devices (Bogena et al., 2010; Bogena et al.,
2009; Bogena et al., 2007). It consists hundreds of soil water content sensors that transmit

information to a main server with wireless communication technology (Bogena et al., 2010;

2
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Hiibner et al., 2009). The performance of a wireless soil water content sensor network
strongly depends on the quality of the sensors in terms of measurement accuracy, the
sensitivity of the sensor output to changes in temperature and the sensor-to-sensor variability
of the empirical relationship between sensor output and soil water content (Robinson et al.,
2008; Robinson et al., 2003). In order to maximize the number of sensor nodes, the soil water
content sensors should be as inexpensive as possible without compromising sensor accuracy

too strongly.

There are different kinds of electromagnetic probes available for the wireless sensor network
(Hiibner et al., 2009; Kelleners et al., 2005; Kizito et al., 2008; Qu et al., 2013; Robinson et
al., 2005b; Ryu and Famiglietti, 2005). Time domain reflectometry (TDR) probe is one of the
most well know soil water content sensors and has the advantage of being in-situ, real-time,
and more accurate. In addition, TDR allows connecting with a multiplexer and
simultaneously collect the soil water content in a number of locations (Blonquist et al.,
2005b; Noborio, 2001; Robinson et al., 2003). Despite all of its advantages, the cost of TDR
and the level of ability required by the operator often place it beyond the means of growth.
Capacitance and impedance probes have tended to fill the lower price market. These
instruments tend to be limited to operating frequencies less than 150 MHz which is
undesirable if the soil has dielectric dispersion in this frequency range (Kelleners et al., 2005;
Kizito et al., 2008; Robinson et al., 2005b; Ryu and Famiglietti, 2005). Most of these
instruments do not permit the measurement of bulk soil electrical conductivity, which can be
useful for management purposes. However, many of the capacitance sensors are sensitive to
interference from bulk soil electrical conductivity and while many will continue to operate,

but the prediction of water content can be very poor. The design concept of a stand-alone
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sensor should be of low cost, small size, high accuracy, and precision in the determination of
permittivity that covers a representative sampling volume. Therefore, the new developed
SPADE TDT sensors are currently considered to be one of the most appropriate probes for
wireless soil water content sensor network (Hiibner et al., 2009; Qu et al., 2013). The SPADE
probe is based on a ring oscillator and the frequency of the oscillator is a function of the
dielectric permittivity of the surrounding medium, which is strongly depended on the water
content of the soil because of the high permittivity of water, i.e. 78.5 at 25°C (Weast, 1986),
as compared to mineral soil solids range from 2 to 9 (Robinson and Friedman, 2003), and air

is 1.

There are two main ways to calibrate the electromagnetic sensor, i.e. the directly calibration
or the two-step calibration procedure. Considering the number of sensors used for the
wireless sensor network, directly calibration is time consuming and labor insensitive. The
two-step calibration procedure in the laboratory experiments is more welcomed. In the first
step, the sensor reading is related to permittivity using the standard sensor calibration
methodology proposed by Jones et al. (2005). The electromagnetic measurement is sensitive
to dielectric relaxation, electrical conductivity, and temperature (Pepin et al., 1995; Topp et
al., 2000). To avoid unwanted noise due to these secondary factors as well as contact
problems between medium and sensor in the calibration. The non-relaxing and non-
conducting liquids of 2-Isopropoxyethanol (i-C;E;) and 1,4-Dioxane (D) were used for this
calibration suggested by Jones et al. (Jones et al., 2005) and Bogena et al. (2007). Several
studies have carried out to test the plausibility of this methodology. Such as Bogena et al.
(2007) have calibrated the EC-5 sensor with the reference liquids of Dioxane/water and 2-

isopropoxyethanol/water mixtures with a permittivity range from 2.2 to 41.3. Their results
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showed that the standard method of the characterization of electromagnetic sensor is
reproducible. The same method was successfully applied to calibrate the ECH,O, TE, and
STE sensors by Rosenbaum et al. (2010). In addition, Qu et al. (2013) also calibrated the
newly developed SPADE TDT sensors using the standard reference liquids. In the second
step, a site-specific calibration can be carried out to relate the permittivity with soil water
content by using empirical models or semi-theoretical models, e.g. Topp model (Topp et al.,
1980), complex refraction index model (Birchak et al.,, 1974), and the two point-mixing
model (Sakaki et al., 2008; Yu et al., 1997). An advantage of the two-step calibration method
is that, assuming that the apparent permittivity and soil water content relationship in the
second step is valid for the soils of interest, recalibration for all the sensors is not required
when the sensors are installed in deferent soils. Otherwise, a recalibration for all the sensors

would be needed in the direct approach.

The Rollesbroich grassland catchment has been equipped with a wireless soil water content
sensor network (SoilNet, 2012). The SPADE TDT soil water content probes (sceme.de
GmbH i.G., Horn-Bad Meinberg, Germany) were calibrated using the two-step calibration
procedure and were installed at different soil depth along a vertical profile. In order to
increase the measurement volume and enable the examination of inconsistencies, two sensors
were installed in each depth. The quality of long time series soil water content data observed
by wireless sensor network can be checked with the method proposed by Dorigo et al. (2013).
First to flag the extremely spikes beyond the physical plausibility range of soil water content.
Then, they checked the suspicious observations based on the continuity of the time series data
sequence. The unexpected soil water content caused by the failure of the measurement was

flagged. Furthermore, they characterized each time step of soil water content with respect to a
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local neighborhood of prior and subsequent observations. The soil water content was flagged
if it exceeded the criterial values. Many other statistical filtering methods are available, such
as the Savitzky-Golay filter, Relational Sequence filter, non-linear FIR filters (Pearson,

2011).

The high spatial and temporal soil water content data observed by wireless sensor network
can be used to characterize and analyze spatial temporal variability of soil water content
patterns. Different quantitative methods are available to analyze spatial temporal dynamics
and patterns using statistical approaches, e.g. temporal stability analysis (Vachaud et al.,
1985; Vanderlinden et al., 2012) or the empirical orthogonal functions (Korres et al., 2010;
Yoo and Kim, 2004). The empirical orthogonal function (EOF) analysis or principal
component analysis (PCA) is a widely applied statistical method for analyzing large
multidimensional datasets and for searching the dominant factors for the spatial temporal
structure of soil water content, and how the dominancy is changed from one factor to another
with time (Perry and Niemann, 2007; Yoo and Kim, 2004). EOF analysis partitions the
observed variation into a series of time-invariant spatial patterns (in terms of EOFs) that can
be multiplied by temporal varying (but spatially constant) coefficients and summed to
reconstruct observed soil water content patterns. In addition, EOFs can be mapped and these
maps can be compared with maps of various soil, landscape, and land use properties in search
of similarities patterns in them(Jawson and Niemann, 2007; Korres et al., 2010; Perry and

Niemann, 2007).

Yet another most widely used method is the temporal stability analysis (Vachaud et al., 1985;

Vanderlinden et al., 2012). Temporal stability has also been termed as rank stability temporal
6
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persistence, or time-stable in describing the persistence of spatial patterns and characteristic
behavior of soil water content (Pachepsky et al., 2005). Vachaud et al. (1985) first proposed
the concept of temporal stability to determine representative locations within a field, thus
improving sampling efficiency while maintaining accuracy to represent the mean of soil
water content in the catchment. In addition, the temporal stability can be used to characterize
the spatial pattern of soil water content with the mean relative difference (MRD). And studies
have shown that the spatial pattern of soil water content does not change with time in a
certain probability, this phenomenon was named as time stability, which was expressed as the

standard deviation of the relative difference (SDRD) in the temporal stability analysis.

Although a large number of publications on spatial variability of soil water content already
exist (Jacobs et al., 2004; Martinez et al., 2014; Martinez et al., 2013; Mohanty and Skaggs,
2001; Wang, 2014), the controlling factors are still not well understood. Previous studies
have shown that multiple factors, such as climate (Martinez et al., 2014), topography (Biswas
and Si, 2011; Hu et al., 2010a), soil properties (Martinez et al., 2013; Williams et al., 2009),
and vegetation (Gomez-Plaza et al., 2001; Mohanty and Skaggs, 2001) affect the MRD of soil
water content, and that these factors tend to interact (Baroni et al., 2013; Vanderlinden et al.,
2012). For instance, Jacobs et al. found that (2004) the sampling locations with relatively
high sand content consistently have a low MRD of soil water content while those locations
with relatively high clay content consistently have a high MRD of soil water content.
Furthermore, with the numerical simulation study of the Hydrus 1D modeling, Martinez et al.
(2013) quantified the impact of soil saturated hydraulic conductivity (K;) on MRD of soil
water content with the consideration of root water uptake, they found a negative linear

relationship between the MRD of soil water content and logarithm of K. Continues to this
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study, they also studied the impact of K; on MRD of soil water content under different climate
conditions (Martinez et al., 2014). The correlation between the MRD of soil water content
and logarithm of K was similar with the previous study. For both studies, only a log-normal
transformed K; was considered for the spatial variability of hydraulic properties. However,
the more complex covariance structures between K, and other VGM parameters are ignored.
The more recently simulation study of Wang (2014) has analyzed the relationship between
the VGM parameters and the MRD of soil water content by considering the covariance
structure between the VGM parameters in a semi-arid climate. He found that the residual soil
water content (6,) was the primary control of MRD of soil water content; and they are
strongly positively correlated with each other. Moreover, by fixing 6, a strong negative
relationship was found between the VGM parameter of n and the MRD of soil water content.
Moreover, Mohanty and Skaggs (2001) reported that the MRD of soil water content are
negative correlated with the slope, the soil sampled located in the smaller slope always have a
larger MRD of soil water content, however, the steep locations always have a smaller MRD of
soil water content. However, all these studies are either only based on the short term
campaign or based on synthetic modeling studies that difficult to transferred them into the

field conditions.

In order to evaluate correlations between soil hydraulic properties and MRD of soil water
content with the continuous time series observations from the wireless sensor network,
hydraulic parameters need to be determined at each location where soil water content is
measured using either direct or indirect methods. There are different methods to evaluate the
hydraulic properties (Angulo-Jaramillo et al., 2000; Mermoud and Xu, 2006; Wessolek et al.,

1994). One common way is directly fitting the water retention curve and hydraulic
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conductivity to experimental data obtained from soil cores in the laboratory (Mermoud and
Xu, 2006; Ratliff et al., 1983). However, the use of such direct method in involves
considerable uncertainty caused in part by the absence of collocation between measurements
of soil hydraulic properties and soil water content. Alternatively, soil hydraulic properties can
be estimated indirectly from basic soil information such as the sand, silt and clay fractions,
bulk density and/or organic matter content using pedotransfer functions (Pachepsky et al.,
2006; Schaap and Leij, 1998; Schaap et al., 2001; Vereecken et al., 2010; Wosten et al.,
2001). Pedotransfer functions are often used to generate soil hydraulic properties in situations
where measurements are too expensive, too cumbersome, or too difficult to carry out.
However, there are many different types of pedotransfer functions in terms of input data, the
predicted properties, mathematical structure and accuracy and it is often not clear which
pedotransfer function is best selected for a particular case. To overcome these problems, a
rapid, reliable, and cost-effective approach of inverse modeling can be used to estimate soil
hydraulic parameters indirectly in case information on in-situ state variables (e.g. soil water
content, matrix potential) is available (Duan et al., 1992; Mertens et al., 2004; Vandam et al.,
1994; Vrugt et al., 2004; Vrugt et al., 2008). This procedure has the advantage that the results
are based on field observations under natural flow conditions. In addition, the parameter
estimated from inverse modeling accommodates more flexible experimental conditions than
typically utilized in laboratory experiments and facilitates estimating values of the hydraulic

properties that pertain to the scale of interest (Vrugt et al., 2008).

It is important to explore the potential correlations between soil hydraulic properties and its
relation with MRD of soil water content with long time series observations from the field.

The knowledge of such correlation can provide information for the design of wireless sensor
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networks, e.g. using the pedotransfer function (Schaap et al., 2001; Vereecken et al., 2010;
Wosten et al., 2001) to estimate the hydraulic properties with the basic soil information which
can be easily get from the soil map, and find the representative locations using the correlation
between hydraulic properties and MRD of soil water content. Furthermore, it will improve the
performance of hydrologic models by considering the variability of soil hydraulic properties

from the MRD of soil water content in the catchment.

In order to further explore the limitations and potentials between the MRD of soil water
content and soil hydraulic properties, a wide range of soil textural classes and climate
conditions should be considered. Furthermore, the MRD of soil water content is known to be
determined by a number of physiographic factors that affect the vertical and lateral
redistribution of soil water. Although factors that influence vertical redistribution are
understood relatively well, the factors that cause lateral redistribution are not yet well
quantified. In future studies, the effect of topography on the MRD of soil water content and
saturation degree should be considered in addition to the heterogeneity of soil hydraulic

properties.

Another important characteristic of the variability of soil water content expressed in terms of
standard deviation of soil water content plays an essential role on the magnitude of land-
surface energy fluxes (Bonan et al., 1993; Hu and Islam, 1998; Ronda et al., 2002) and
hydrologic fluxes such as runoff (Arora, 2001; Gedney and Cox, 2003). By combining the
relationship between the standard deviation (o) and mean of soil water content (<6>) with
the integrating knowledge of remote sensing and hydrology models may finally lead to a

better understanding and a more fundamental interpretation of the role of soil water content
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variability in land surface processes across (Crow et al., 2005; Zijl, 1999). In addition, it is
useful for improve the prediction accuracy of large-scale hydrologic, weather, and climate
models (Teuling et al., 2007). Furthermore, it may also be useful for validation of large-scale

remote sensing soil water content measurements (Famiglietti et al., 2008).

Several field studies have been carried out to identify the relationship between standard
deviation and mean of soil water content; however the results are not consistency. For
example, several investigators found positive relationship between the standard deviation and
mean of soil water content (Famiglietti et al., 1998; Oldak et al., 2002; Takagi and Lin,
2011). In contrast to their studies, Famiglieittie et al. (1999), Hupet and Vanclooster (2002)
and Western et al. (2004) observed negative correlations between the standard deviation and
mean of soil water content. A more common saying is that there was a convex curve between
the standard deviation and mean of soil water content, the standard peaked at the middle
range of soil water content, and decreased in both wet and dry hand (Choi and Jacobs, 2007,

Garcia-Estringana et al., 2013; Rosenbaum et al., 2012).

The 6¢(<0>) relationship can be non-unique, with many control factors including spatial and
temporal heterogeneous fluxes and the sink terms such as infiltration, evaporation,
transpiration, and surface runoff (Albertson and Montaldo, 2003; Teuling and Troch, 2005).
These terms depend on soil properties, vegetation, meteorological factors, groundwater, and
topography (Famiglietti et al., 1998). It was reported that soil properties including soil texture
and structure have (Hu and Islam, 1998; Vereecken et al., 2007) strongly affect the soil water
variability by direct influence on the soil hydraulic. Under wet condition, the heterogeneity of

soil porosity can lead a great impact on water movement, and thus soil water content
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variability. When soil start to drain, the increasing variability of hydraulic properties lead to
an increasing standard deviation of soil water content. After the soil water content decreases
to a threshold soil water state (between wilting point and field capacity) the dominant flux
switches from drainage to evapotranspiration, the impact of vegetation on the variability soil
water content is considered to be major at this moment, and therefore the standard deviation
of soil water content becomes less affected by the hydraulic properties. With further drying,
the standard deviation of soil water content diminishes by evapotranspiration, which is only

related to residual soil water content.

The existing methods to investigate the control of the oyp(<0>) pattern include numerical
simulation of the soil water balance (Montaldo and Albertson, 2003; Roth, 1995) and first
order stochastic analysis of unsaturated flow (Vereecken et al., 2007; Zhang et al., 1998).
Albertson and Montaldo (2003) presented a theoretical framework to evaluate the variance of
soil water content as a function of the variances of infiltration, drainage, evapotranspiration,
and horizontal redistribution and their covariances. They found that according to the sign of
the correlation between the flux and the state of soil water condition, covariances between
soil water and land surface fluxes act to generate or destroy the variance of soil water content
through time. Zhang et al. (1998) provided an analytic stochastic method to obtain the
variance of effective soil water content for 1D vertical flow using the Brooks-Corey model
and Gardner-Russo model. Based on the work of Zhang et al. (1998), Vereecken et al. (2007)
predicted the 6o(<6>) relationship with the stochastic results of the unsaturated Brooks-Corey
modal, and they found that the hydraulic parameters of Brooks-Corey and their spatial
variances determine to a large extent of the c¢(<0>) shape, especially the parameter described

as pore size distribution controls the maximum value of the standard deviation of soil water
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content. These stochastic studies are based on the Brooks-Corey model due to its
mathematical tractability. However, it is generally accepted that the more complex van
Genuchten-Mualem (VGM) model may perform better in expressing experimental data than

Brooks-Corey model.

The stochastic approach of Zhang et al. (1998) to describe 1D unsaturated gravitational flow
in a heterogeneous flow domain was used to derive a closed-form expression that describes
0p(<60>) using the VGM model. The encouraging exploration presented in this thesis can be
served for future large scale model applications. Because the basic assumptions underlying
the stochastic theory are rarely in the real field conditions, the closed-form expression should
be tested across a wide range of climatic conditions and soil texture classed. Future model
developments are intended to consider meteorological forcing variability, and the topographic

effects on the spatial distribution of soil water content.

The present thesis is structured into three main parts. The objective of first part is the
calibration of the newly developed SPADE soil water content sensor for wireless sensor
network applications. To this end, a series of laboratory experiments were performed in order
to explore sensor-to-sensor variability and temperature effects on dielectric permittivity
measurements with both standard reference liquid and soil samples. In addition, a site
specific calibration between the permittivity and soil water content was derived with the
undisturbed soil samples took from the Rollesbroich catchment. The objective of the second
part is to investigate the correlation between hydraulic properties and spatial variability of
soil water content in catchment scale using a two-year time series soil water content data

observed with wireless sensor network and an inverse modeling approach. Finally, the third
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part derived a closed-form expression to describe the variability of soil water content using
stochastic analysis of 1D unsaturated gravitational flow based on the van Genuchten-Mualem
(VGM) model. A sensitivity analysis was applied to check how the hydraulic properties
affect the relationship between the standard deviation and mean of soil water content.
Furthermore, the closed-form expression was verified using eight datasets span a wide range
of soil texture classes and climate conditions. The results of this thesis are presented in three
chapters which correspond to published or submitted publications in international peer-

reviewed journals.

Chapter 2 Calibration of a novel low-cost soil water content sensor based on a ring oscillator.

Chapter 3 Effects of soil hydraulic properties on the spatial variability of soil water content:

evidence from sensor network data and inverse modeling.

Chapter 4 Predicting sub-grid variability of soil water content from basic soil information.

These chapters feature their own objectives, introductions, methods and materials since the
different issues highlight aspects of the overall research question in a different manner. The

results are concluded and a brief outlook for further research is given in Chapter 5.
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2 Calibration of a novel low-cost soil water content sensor based on a ring oscillator

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, H. Vereecken.
Calibration of a novel low-cost time domain transmission soil water content sensor. Vadose

Zone Journal, 2013, 12(2). doi:10.2136/vzj2012.0139.
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2.1 Objectives

In this chapter, we focus on the calibration of sensor response to soil water content using a
two-step calibration procedure. First step is to relate sensor response to apparent dielectric
permittivity by using an empirical sensor response permittivity (SRP) model. The sensor
accuracy is evaluated by the sensor-to-sensor variability and temperature effect with the
reference standard liquids. In the second step, a site specific calibration between the apparent
dielectric permittivity and soil water content using the petrophysical model of complex

refraction index model (CRIM) is derived for Rollesbroich catchment (See Appendix A).

2.2 Introduction

Soil water content is a key variable in the soil, vegetation and atmosphere continuum. It plays
an important role in weather and climate predictions because it directly influences the
exchange of water and energy at soil surface. In addition, it also impacts crop growth and the
fate of agricultural chemicals applied to soils. Multi-scale measurements of soil water content
are required to improve understanding and modeling of soil hydrology. There is a wide range
of methods for soil water content estimation (Robinson et al., 2008). The gravimetric method
is the standard method and is typically used as a reference. However, the effort associated
with soil sampling prohibits monitoring with a high temporal and spatial resolution.
Electromagnetic soil water content sensors that measure the dielectric permittivity of the soil
are now widely accepted for soil water content determination because these sensors allow
continuous, fast, stable and non-destructive sensing of the spatial temporal dynamics of soil

water content at the field scale (Robinson et al., 2003; Vereecken et al., 2008).
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Wireless sensor network technology has recently been used for catchment scale
measurements of soil water content with high spatial and temporal resolution to facilitate
better understanding of hydrological processes (Bogena et al., 2010; Rosenbaum et al., 2012).
Such large scale but highly resolved soil water content information is important for the
calibration and validation of remote sensing data (Montzka et al., 2011; Montzka et al.,
2013). In the framework of the TERENO project (TERENO, 2012; Zacharias et al., 2011),
the test site Rollesbroich in the Rur/Lower Rhine Valley Observatory has been equipped with
a wireless soil water content sensor network. The performance of a wireless soil water
content sensor network depends strongly on the quality of the sensors in terms of
measurement accuracy, the sensitivity of the sensor output to changes in temperature and the
sensor-to-sensor variability of the empirical relationship between sensor output and soil water

content (Kaatze and Huebner, 2010).

In previous wireless soil water content sensing networks, we have relied on the use of
capacitance sensors, such as the EC-5 and ECH,O-TE sensor (Bogena et al., 2007;
Rosenbaum et al., 2010). These capacitance sensors operate at a relatively low measurement
frequency of 70 MHz, and the sensor output therefore depends to some extents on the
electrical conductivity and imaginary dielectric permittivity of the soil (Kelleners et al., 2005;
Kizito et al., 2008; Robinson et al., 2005b). Kizito et al. (2008) reported that the sensitivity to
electrical conductivity decreased considerably using a higher operating frequency of 150
MHz. Experimental results of Campbell (1990) suggested that the frequency should be higher
than 50 MHz to avoid low frequency dielectric relaxation effects. However, Kelleners et al.
(2005) found that the frequency must be above 500 MHz to obtain the most reliable estimates

of the real part of the dielectric permittivity in conductive soils.
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An alternative electromagnetic sensor design amendable to wireless sensing applications is
the family of so-called time domain transmission (TDT) sensors. The general operating
principle of these sensors is similar to that of the well-established time domain reflectometry
(TDR) method, which estimates dielectric permittivity from the propagation velocity of an
electromagnetic wave. It is important to realize that there are different approaches to
determine this propagation velocity within the family of TDT sensors. Blonquist et al.(2005b)
reported on the Acclima TDT, which employs a waveform interpretation process similar to
those used by conventional TDR systems to find the propagation velocity. Most other
available sensors in this family use the oscillation frequency of a ring oscillator to
approximate propagation velocity (e.g. Gro-Point by ESI; SMRT-Y by Rain Bird; TDT
Aquaflex by ADCON). A common feature of all these sensors is that all electronics are
integrated in the head of the probe, which removes the need for long cables and multiplexers
as with the TDR method. This makes these sensors suitable for wireless sensing applications.
In addition, these sensors operate at higher frequencies than capacitance methods and are,

therefore, expected to provide a higher measurement quality.

Blonquist et al. (2005b) evaluated the Acclima TDT sensor (McCready et al., 2009) and
reported that this sensor and reference TDR measurements operated within £3 permittivity
units of each other within a permittivity range of 9 to 80. Unfortunately, the current design of
the Acclima TDT sensor as well as of the other aforementioned sensors using ring oscillators
do not allow direct insertion in natural soils and their use is currently restricted to
applications where the probe can be buried (mainly irrigation management in agricultural

soils and turfgrass).

18



Chapter 2

Recently, the SPADE sensor (sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) has
become available (Hiibner et al., 2009). This sensor also relies on a ring oscillator, but it
allows direct insertion into natural soils. An additional benefit of the SPADE sensor within
the context of wireless sensor networks is the very low power input (~ 50 mA). Since
wireless sensor networks typically rely on batteries, very low power consumption is needed
to keep the network operational for several years. A disadvantage of the SPADE probe design
is that probe calibration is required to relate the sensor output to soil water content because

the sensor waveguides are contained within an epoxy molding material for probe rigidity.

There are two main strategies to calibrate sensor output to soil water content. The first
strategy is to directly calibrate each sensor against soil water content. However, considering
the high number of sensors normally used in wireless sensor networks, such a direct
calibration is often too labor intensive and time consuming. Instead, we propose to use the
two-step calibration procedure of Jones et al. (2005). The first step of this calibration
procedure relies on measurements in reference liquids with a known apparent dielectric
permittivity, which are used to obtain an empirical model that relates sensor output and
apparent dielectric permittivity. Such an empirical model can either be derived for each
individual sensor (i.e. a sensor-specific calibration), or a single ‘universal’ empirical model
can be derived from a selection of sensors. In the second step, the apparent dielectric
permittivity is related to soil water content using an empirical (Topp et al., 1980) or semi-
theoretical model (Birchak et al., 1974). An additional advantage of this method is that there

is no need to recalibrate the sensors when they are installed in a different soil.
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Recent studies have shown that all electromagnetic soil water content sensors are sensitive to
temperature in some extent (Blonquist et al., 2005a; Pepin et al., 1995). Four types of
temperature effects on dielectric permittivity measurements are important to consider. First,
the influence of temperature on the apparent dielectric permittivity of water (&ywater) needs to
be considered, i.e. ewaer approximately decreases with 0.7 % per °C (Weast, 1986). This
decrease of ey,er With increasing temperature explains why the bulk dielectric permittivity of
sandy soils decreases with increasing temperature (Blonquist et al., 2005a; Pepin et al., 1995).
Or and Wraith (1999) investigated how temperature affects the bulk dielectric permittivity of
a range of soils and reported that the bulk dielectric permittivity can also increase with
increasing temperature, in particular for wet soils with a high specific surface area. This
increase of the dielectric permittivity with increasing temperature was attributed to the release
of low-permittivity bound water from the electrical double layer that is formed near
negatively charged solid surfaces. A third effect of temperature on the dielectric permittivity
is through the temperature dependence of soil bulk electrical conductivity. The degree to
which bulk electrical conductivity affects the measured permittivity depends of the frequency
of the electromagnetic wave used to interrogate the soil. At higher frequencies (> 500 MHz),
the effect on permittivity is much reduced (Schwartz et al., 2009). Finally, the sensor output
from electromagnetic soil water content sensors is also directly influenced by temperature
(Blonquist et al., 2005a; Rosenbaum et al., 2011). These competing effects explain why a
wide range of temperature sensitivities have been observed for soil dielectric permittivity

measurements.

20



Chapter 2

2.3 Materials and Methods
2.3.1 The SPADE sensor

The propagation velocity (v,) of electromagnetic waves in soils is given by:

[

VHUré&r

v, = Eq.2.1

where ¢ is the speed of light in vacuum (3x10° ms™), x, and &, are the magnetic permeability
and the dielectric permittivity of the medium relative to vacuum, respectively. As most soils
are non-magnetic (Van Dam et al., 2002), u, is typically equal to 1 and the propagation
velocity depends only on ¢,. Because of the large permittivity contrast between water (~ 80)
and other soil constituents (air: 1; solid phase: 2-9), the soil bulk permittivity is well suited to

sense soil water content (Topp et al., 1980).

The SPADE sensor is a ring oscillator (Hiibner et al., 2009). A line driver of an ECL logic
family emits a steep pulse (< 300ps pulse rise and fall time). The pulse travels along an
unshielded transmission line buried in soil, where the propagation velocity depends on the
soil dielectric permittivity (Eq. 2. 1). The pulse is inverted before it is fed back to the input of
the line driver. This results in an oscillation frequency, fos, which depends on the following

components:

1

1
m*z Eq.2.2

Jose =

where T¢is the pulse travel time along the unshielded transmission line that depends on the
soil dielectric permittivity, #, is the propagation delay of the ECL gate (typically 250 ps), and

t,r expresses the influence of the pulse rise and fall time and the switching of the differential
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input amplifier (e.g. the switching mechanism and thresholds). The factor % indicates that a

logical 1 followed by a logical 0 (two travelling signal edges) make a full signal period. The

oscillation frequency is approximately 150 MHz in water and 340 MHz in air.

‘
o

Temp.

Tranzmission line in =il

Micro-
cantroller

Figure 2. 1. (a) Block diagram and (b) the printed circuit board of the SPADE sensor, size: 20

cmx3 ¢cmx0.2 cm (Hiibner et al., 2009).

The design of the SPADE sensor is illustrated in Figure 2. 1. The transmission line consists of
two copper strips embedded in a 4 layer epoxy printed circuit board (PCB). The PCB is 3 cm
wide and the part forming the ring oscillator is 12 cm. The sensor head that contains the
sensor is 8 cm long. The power requirement of the SPADE sensor is very low with about 50
mA during the measurement time of about 50 ms. The SPADE sensor also determines
temperature using a sensor with an accuracy of £0.5 °C from -10 °C to 85 °C, which
increases the total measurement time to ~1 cc. The sensor provides two analog output
channels (0-2.8 V) or a digital interface (RS485). In this study, we used the analog output

channels.
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2.3.2 Reference liquids

While assessing the sensor characteristics, it is important to realize that in addition to the
dielectric permittivity, EM measurements are sensitive to dielectric relaxation, electrical
conductivity, and temperature (Pepin et al., 1995; Topp et al., 2000). To avoid unwanted
noise due to these secondary factors as well as contact problems between medium and sensor,
liquids with known dielectric properties are used instead of soil for the calibration. As
suggested by Jones et al. (Jones et al., 2005) and Bogena et al. (2007), we used 2-
Isopropoxyethanol (i-C;E;) and 1,4-Dioxane (D), which have been described in detail
elsewhere (Kaatze et al., 1996; Schwank et al., 2006). Five reference liquids (pure Dioxane
and four i-C3E /water mixtures with a defined volume fraction of i-C3E;; denoted as M; to
Ms) were selected from the reference liquids described by Bogena et al. (2007). These five
reference liquids evenly cover the permittivity range from 2.2 to 34.8, which includes most of
the dielectric permittivity values obtained in natural soils. The frequency-dependent complex
dielectric permittivity of the four i-C;E;/water mixtures (M, to Ms) at 25 °C was measured in
a frequency range from 0.5 to 10 GHz using a dielectric probe kit with a slim probe (Agilent
85070E, Agilent Technologies) and a network analyzer (HP 8720A, Agilent Technologies)
by Rosenbaum et al. (2010). The properties of M; (pure Dioxane) were not measured because
they are well documented (Schwank et al., 2006). The volume fractions and the reference

dielectric permittivity of all five reference liquids are listed in Table 2. 1.
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Table 2. 1. Dielectric permittivity of the reference liquids at 25 °C. Data were obtained by

Rosenbaum et al. (2011).

Volume fraction

Reference . Qioxane Deionized Eref
liquid Medium /1-C3E* Water
[-] [-] [-]

M, Dioxane 1 0 2.2
M, Dioxane 09 0.1 6.65
M; 1-C3E* 0.92 0.08 18.14
My i-C3E * 0.8 0.2 26.26
M; 1-C3E* 0.68 0.32 34.82

* 2-Isopropoxyethanol

2.3.3 Measurement set-up and sensor output determination

The laboratory measurements made with the SPADE sensor use a stable 5 Voltage DC power
supply (Agilent, E3646A, 60W dual output power supply), and a high precision digital
multimeter (Escort 99 TRUE TMS, accuracy: 0.025 %) to determine the sensor output
voltage (V). Several precautions were taken during the measurements. First, the liquids were
thoroughly mixed using a magnetic stirrer. No effects of the stirring magnet on the sensor
output were found. Second, the SPADE sensors were completely and centrally immersed in
the large 5 liter cuboid bottle (length: 28 cm, diameter: 15.2 cm) to ensure that the sampling
volume was contained within the bottle. Third, the 1.5 m long sensor cable was fixated with a
Polyvinylchloride bar to reduce effects of cable movement and positioning on the
measurements. Finally, possible degrading effects of reference liquids on the sensor epoxy
resin body were minimized by carefully cleaning the sensor after each measurement and
minimizing the contact time. This measurement set-up was used for all measurements in

reference liquids described below.
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2.3.4 Sensor-to-sensor variability

To assess the sensor-to-sensor variability, we used five SPADE sensors in a replication
experiment. In this experiment, we made five measurements with five SPADE sensors in
reference liquid Ms with a dielectric permittivity of 34.82 at 25 °C (see Table 2. 1). For each

measurement, the sensor was disconnected and the cable position was changed.

2.3.5 Relating sensor output to dielectric permittivity

The SPADE sensor internally converts the measured oscillation frequency into a voltage
output, which has to be converted to an apparent dielectric permittivity, K,, using an
appropriate empirical function. We determined the sensor output of 60 SPADE sensors in all

five reference liquids. We considered two empirical functions (Bogena et al., 2007; Jones et

al., 2005):
K T
a=Yit—F
a + P/, Eq.2.3
Ko = (a; * vPi + y)? Eq.2.4

where v is the sensor output (voltage), and a;, f;, and y; are the fitting parameters. The root
mean square error (RMSE) between the predicted K, and the known reference permittivity

(Table 2. 1) was used to quantify the accuracy of the empirical functions.

2.3.6 Derivation of the temperature correction function

In order to estimate how temperature directly affects the sensor output of the SPADE sensor,

we determined the sensor output of six SPADE sensors in four reference liquids (M; to Ms;
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M, was excluded as the melting point is 11.8 °C). The temperature of these reference liquids
was varied within a temperature range from 5 °C to 40 °C in steps of 5 °C using a circulating
water bath controlled by a thermostat. A sensor-specific model was used to relate sensor
output and dielectric permittivity for each sensor. The difference between the measured
apparent dielectric permittivity (K, r) and the reference static permittivity (e.) is used to

quantify the effect of temperature on the measured apparent dielectric permittivity:
AKa,T = Ka,T - gref Eq 2.5

A positive value of 4K, rindicates an overestimation of the reference permittivity, while a
negative value of 4K, r implies an underestimation of the reference permittivity. Following
Rosenbaum et al. (2011), an empirical polynomial function was used to obtain a function that

describes 4K, r as a function of T and K,:
AKgr=a*K:+bxT?>+cxK,+d*T+exK,T+f Eq.2.6

where a to f are fitting parameters that were determined using a stepwise regression method
in MATLAB (The MathWorks, Natick, MA). This fitted function was used to correct for
temperature effects on the sensor output of the SPADE sensor. As outlined in the introduction,
additional effects of temperature on soil dielectric permittivity are present in soil and these

should also be accounted for in addition to the effect of temperature on the sensor output.

2.3.7 Testing of the temperature correction function

To illustrate the plausibility of the apparent dielectric permittivity obtained with the SPADE
sensor after temperature correction, we determined how the corrected apparent dielectric
permittivity of two soil samples (length: 27 cm, diameter: 15 cm) varied with temperature.

The first soil sample was a packed coarse sand with a mean grain size of 0.024 cm (F36,
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Quarzwerke Frechen, Germany), which was saturated with deionized water. The second soil
sample was an undisturbed silt loam sample took from the Rollesbroich test site, Germany
(Korres et al., 2010). In both samples, we installed two SPADE sensors and the entire sensor
including the probe head was contained in the sample. A wireless sensor network unit was
used to obtain the sensor output of the two SPADE sensors, which was converted to apparent
dielectric permittivity using a sensor-specific calibration equation. We additionally installed a
7.5 cm long CS 640-L 3-rod TDR probe attached to a TDR 100 cable tester (Campbell
Scientific, Logan, UT). Temperature was varied from 5 °C to 40 °C in 5 °C temperature steps
using a circulating water bath controlled by a thermostat (Figure 2. 2). The sides of the
columns were isolated to avoid temperature gradients. In order to assess variability in sensor

output, we repeated each experiment three times.

To evaluate the experimental results for these soil samples, the change in the apparent
dielectric permittivity with rising temperature was modeled using the CRIM model (Birchak

et al., 1974):

K =1 -1+ sﬁt)lid+(r1_9)*Kzfir+9*Kﬁ

water

Eq.2.7

where # is the porosity of the soil, 1-4 is the solid fraction, #-6 is the air fraction, / is a shape
factor which is assumed to be 0.5 (Birchak et al., 1974), K, is the apparent dielectric
permittivity measured by the sensors, and Ker, Ksoig, and Ky; are the permittivity of water,
solids, and air, respectively. The dielectric permittivity of air (K;) is 1, and that of water

(Kywarer) 1s a function of temperature, and can be calculated by (Weast, 1986):

Kyater = 78.5 * [1 — 4.579 * 1073(T — 25) + 1.19 * 1075(T — 25)? — 2.8 * 1078(T — 25)? ] Eq.2.8
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Figure 2. 2. (a) Vertical view of the soil container; the SPADE sensors and the TDR sensor
were completely inserted in the soil; (b) schematic view of experimental setup using the

saturated coarse sand and the undisturbed soil sample from the Rollesbroich test site.

The permittivity of K,z was fitted. The porosity and soil water content of the samples were
derived using the gravimetric method (oven drying at 105 °C, 24 hours). It is important to
note here that this modeling approach assumes that the change in permittivity with changing
temperature is solely related to the temperature sensitivity of the dielectric permittivity of
water after correction for temperature effects on the sensor output. Although this is a
reasonable approximation for the sand and soil sample used in this study, more complex
modeling approaches such as those presented by Schwartz et al. (2009) and Wagner et al.
(2011) should be considered for soils with a high surface area because bound water relaxation
and bulk electrical conductivity effects on the dielectric permittivity are expected to be more

important for such soils.
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2.4 Results and Discussion

2.4.1 Sensor-to-sensor variability

The results of the replication experiment in Ms show that the repeat measurements with each
of the five sensors were very close together (Figure 2. 3), which indicated that instrument
noise was low and that the experimental procedure was repeatable. To test whether the sensor
output was significantly different, an ANOVA was conducted. In this statistical analysis, the
total variance is divided into two parts: the variance between sensors (sensor-to-sensor
variability), which is due to the sensor production process; and the variance between
replication measurements (noise), which is caused by the repeatability of the experimental
procedure. The results of this ANOVA indicated that at least one of the SPADE sensors
provided significantly different sensor output (F value of 83.1,Table 2. 2). The observed
variability was slightly lower than observed for the EC-5 capacitance soil water content
sensor (F value of 87.5), which was evaluated by (Rosenbaum et al., 2010) for sensor-to-

sensor variability analyze.

Table 2. 2. ANOVA results of measurement in reference liquid M5 with five SPADE sensors

and five replication measurements per sensor.

Source of Variation SS df MS F P-value F critical
Sensor to sensor variability 0.00331 4 0.00083 83.1 3.61E-12 2.87
Noise 0.000199 20 9.94E-06
Total 0.00350 24

29



Chapter 2

2.02
% ;

—_— o [\

O o =]

O ) —_
! 1
>r>

XX K

o
0

1
OoOooa

Sensor response, [ V]

—
\O
~

1 2 3 4 5
Sensor number

Figure 2. 3. Replication experiments consisting of five replicate measurements with five

SPADE sensors in reference liquid Ms.

2.4.2 Relating sensor output to dielectric permittivity

The sensor output for all 60 SPADE sensors for each of the five reference liquids is presented
in Figure 2. 4. With increasing permittivity, the sensor output voltages increased in a non-
linear way. It is also observed that the variation in measured sensor output increased with
increasing permittivity, which is also confirmed by the standard deviation of the
measurements which increases from 0.0074 to 0.0166 (Table 2. 3). The two empirical
functions fitted to all of these measurements are also presented in Figure 2. 4. The best fitting
parameters are presented in Table 2. 4. The RMSE of the sensor output for the first empirical
function (Eq. 2. 3) was 0.0188, which was less than the RMSE of 0.0772 that was obtained
for the second empirical function (Eq. 2. 4). Therefore, Eq. 2. 3 was selected to calibrate the
SPADE sensors. Table 2. 5 provides the RMSE between measured and predicted K, for each

reference liquid for this ‘universal’ calibration. Clearly, the quality of the fit was lower for
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higher permittivity, which was expected because of the observed sensor-to-sensor variability
in reference liquid Ms. The RMSE of K, value was 0.75 for this ‘universal’ calibration was
considerably lower than the RMSE obtained for the calibration of the EC-5 capacitance probe
in Rosenbaum et al. (2010) because the sensor-to-sensor variability of the SPADE sensor was

smaller.

Table 2. 3. Statistical summary of the sensor output of 60 SPADE sensors in five reference

liquids.

Mean STD CV*

V], [] [V], [-] [%o]
Ml 0.6494 0.0074 1.14
M2 1.2598 0.0100 0.79
M3 1.7680 0.0124 0.70
M4 1.9150 0.0139 0.72
M5 1.9978 0.0166 0.83

*CV is the coefficient of variation

Table 2. 4. Fitting parameters of the ‘universal’ calibration curve of SPADE sensors and the

RMSE between measured and predicted reference dielectric permittivity.

a B y RMSE
Eq.3 -0.1502 0.3612 -0.5199 0.0188
Eq4 -0.3589 3.5190 -1.5777 0.0772
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Figure 2. 4. Sensor output of 60 SPADE sensors in five reference liquids. The two fitted

‘universal’ calibration relationships are also presented.

Table 2. 5. The RMSE between apparent dielectric permittivity Ka (determined using sensor-
specific and universal calibration) and the reference permittivity ., as well as the
corresponding (equivalent) soil water content, 6, for measurements with 60 SPADE sensors

in five reference liquids (M;-Ms) at 25°C.

Sensor-specific . . .
P Universal calibration

Standard calibration

liquids RMSEKa RMSE#* RMSEKa RMSE 6*
[-] [<:m3-cm'3 ] [-] [cm3~cm'3]

Ml 0.199 0.00535 0.543 0.00695

M2 0.280 0.00624 0.804 0.00777

M3 0.156 0.00210 0.581 0.00628

M4 0.312 0.00290 0.893 0.00755

M5 0.127 0.00830 1.156 0.00873

all 0.226 0.00403 0.753 0.00750

* Equivalent soil water content @ estimated by the polynomial empirical permittivity-soil

water content relationship of Topp (1980).
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To evaluate to what extent a sensor-specific calibration can remove the sensor-to-sensor
variability, we compared the RMSE obtained with a sensor-specific and a single ‘universal’
calibration in each reference liquid (Table 2. 5). Clearly, the RMSE decreased with the use of
a sensor-specific calibration for each reference liquid, which indicates that a sensor-specific
calibration can further improve the accuracy of soil water content measurements with the
SPADE sensor. Expressed in equivalent soil water content, the overall quality of the
calibration between sensor output and apparent dielectric permittivity improved from 0.008

cm’cm” to 0.004 cm’cm” using the sensor-specific calibration.

2.4.3 Temperature correction function for sensor output

The results from the temperature experiment are presented in Figure 2. 5. With increasing
temperature, the reference permittivity &, decreased as already discussed by Rosenbaum et
al. (2011). The temperature dependence of the dielectric permittivity of the reference liquids
increased with increasing permittivity of the liquids because of the increasing volume fraction
of water. Figure 2. 5 also shows that the mean temperature dependence of the apparent
dielectric permittivity for the six SPADE sensors (error bars indicate the standard error of the
mean). The apparent dielectric permittivity measured by the SPADE sensors showed the
same tendency as the reference permittivity with respect to temperature. However, for
temperature lower than 25°C the SPADE sensor underestimates the reference dielectric
permittivity, while it overestimates the reference dielectric permittivity at higher temperature
(> 25 °C). In addition, the deviations between measured apparent dielectric permittivity and

reference permittivity increased with increasing permittivity (Figure 2. 5).
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Figure 2. 5. The reference permittivity (solid line) and the apparent dielectric permittivity K, r
for the SPADE sensors as a function of temperature. The temperature dependence of the
reference permittivity for M, to Ms was obtained from Rosenbaum et al. (2011). The error

bars are the standard error of the mean estimated from six sensors.

Figure 2. 5 exhibits the mean temperature effect (4K, r) calculated according to Eq. 2. 5 for
all reference liquids and temperatures. We observed that the 4K, rwas close to but not equal
to zero at 25 °C (also see Figure 2. 5). This is related to the accuracy of the sensor-specific
calibrations used to convert sensor output to dielectric permittivity. Therefore, all data
measured in each reference liquid were shifted to make 4K, r equal to zero at 25 °C. The
largest deviations between measured and reference dielectric permittivity were found in Ms at
5 °C (AK,r = -2.85, equivalent to 0.031 cm’cm™) and 40 °C (4K, = 1.73, equivalent to
0.014 cm’cm™). The observed deviations for the SPADE sensor were similar to those

observed for the EC-5 capacitance probe evaluated by Rosenbaum et al. (2011).
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Figure 2. 6. (a) Measured mean temperature effect 4K, r(marker) and predicted temperature
effect using Eq. 2. 6 as a function of temperature; and (b) the modeled and measured mean

temperature effect of 4K, 1.

Table 2. 6. Parameters of the empirical polynomial function describing the temperature effect
on the SPADE sensor output determined by stepwise regression. The RMSE and R? of the fit

are also reported.

a b* ¢ d e f RMSE R’
-0.00055 0 0.0043  -0.0906 -0.0176  0.4298  0.1489  0.9831

The second order polynomial function relating 4K,r to T and K, (Eq. 2. 6) fitted the
measurements well (R* = 0.9831, RMSE = 0.1489) (Figure 2. 6). The fitting parameters are
provided in Table 2. 6. Only one regression parameter ‘b’ was removed in the stepwise
regression procedure because it was insignificantly different from zero at a 95% confidence
level. The good agreement is also evident from Figure 2. 6, where the measured and the

modeled 4K, r were plotted against each other.
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2.4.4 Testing the temperature correction function

Figure 2. 7 shows the apparent dielectric permittivity measured with the SPADE sensor and
TDR as a function of temperature for the coarse sand sample. The soil water content of this
sample was 0.4114 cm’cm™ and the porosity was 0.4129 cm’cm™. It can be seen that the
uncorrected apparent dielectric permittivity did not significantly change with temperature.
However, the reference TDR measurements did show a decrease in apparent dielectric
permittivity, which is not surprising because in coarse sand the permittivity of free water by
far is the greatest influence on apparent permittivity and the permittivity of free water
declines as temperature increases. In addition, it is well established that TDR measurements
are less affected by temperature (Assouline et al., 2010; Blonquist et al., 2005b; Robinson et
al., 2005a). We modeled the decrease of permittivity with increasing temperature assuming
that the permittivity of water is the only contributing factor to the temperature dependency of
the dielectric permittivity. After fitting the Ksqiq of the CRIM model to the TDR
measurements, the modeled temperature dependence fitted well with the TDR measurements
with a RMSE of 0.1694. The fitted value of K,z was 5.75, which corresponds well to K,jig
values reported for quartz and other soil minerals (Robinson, 2004; Rosenbaum et al., 2011).
After the application of the temperature correction function (Eq. 2. 6) to the SPADE
measurements, the corrected apparent dielectric permittivity of the coarse sand decreased
with increasing temperature. The corrected apparent dielectric permittivity fitted well with
the reference TDR measurements. We also fitted the CRIM model to the temperature-
corrected SPADE measurements. This resulted in a RMSE of 0.1983, which was only slightly

higher than the RMSE obtained for TDR. The fitted K,z was 5.81 for the corrected SPADE
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sensor measurements, which was very close to the value obtained for TDR. These results

indicated that our temperature correction function works well for saturated coarse sand.

The same experiment was performed for an undisturbed soil sample took from the
Rollesbroich test site (Figure 2. 7). The soil water content of this sample was 0.4225 cm’cm™
and the porosity of this sample was 0.4942 cm’cm™. Again, the uncorrected apparent
dielectric permittivity measurements with the SPADE sensor hardly decreased with
temperature. In addition, the standard deviation of the three measurements for each
temperature was higher as compared to the TDR and SPADE sensor measurements in the
saturated coarse sand. As the permittivity of these two samples was similar, we can exclude
that this is related to the increasing measurements noise that was observed with increasing
permittivity. Instead, we attribute the larger standard deviation to limited soil water
redistribution during the experiment because the silt loam sample was not saturated and not

as homogeneous as the saturated coarse sand.

After the application of the temperature correction function, the corrected apparent dielectric
permittivity of the SPADE sensor matched well with the reference TDR measurements. The
fitted Kjoiq of 5.97 for the TDR measurements was again close to the Ky,;s of 5.92 obtained
for the corrected SPADE measurements, and the quality of the fitting was also very similar
(an RMSE of 0.1446 for TDR and 0.1623 for SPADE sensor measurements). This good
correspondence between measurements and modeling is an indication that bound water
effects on the temperature sensitivity of the soil dielectric permittivity do not need to be

considered at the Rollesbroich test site, despite the relatively fine silt loam texture.
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Figure 2. 7. Temperature dependence of the apparent dielectric permittivity measured with
TDR and SPADE sensors for (a) a packed saturated coarse sand and (b) an undisturbed silt
loam. The black rectangles are the uncorrected apparent dielectric permittivity (K,) obtained
with the SPADE sensors, the gray crosses are temperature-corrected SPADE measurements,
and the red dots are the reference TDR measurements. The black and red lines are modeling
results for the CRIM model. The error bars indicate the standard deviation of three
experiments. The temperature values of the uncorrected K, and the temperature-corrected K,

are shifted by 1 and 0.5°C from the actual temperature to improve visibility.

2.5 Conclusions

In this paper, we evaluated the SPADE sensor with respect to sensor-to-sensor variability,
accuracy of calibration between sensor output and dielectric permittivity, and the effect of
temperature on the sensor output. A replication experiment shows that sensor-to-sensor
variability was significant, and much larger than the measurement noise introduced by the

instrumentation and our experimental procedures. We calibrated the sensor output of 60
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SPADE sensors to permittivity using a standard procedure based on a reference liquids with a
known dielectric permittivity (2.2 < g, < 34.8). Our results show that a sensor-specific
calibration improved the accuracy of the calibration, although a single “universal’ calibration
also provided a high accuracy. Sensor-specific calibration is associated with additional effort
and the results presented here can be used to decide whether sensor-specific calibration is

required given the accuracy requirements of a particular application.

Temperature has a significant influence on the sensor output of the SPADE sensor. The
results show that the effect of temperature effect on the sensor output depends on the
dielectric permittivity of the medium. The largest effect of temperature was found for high
apparent dielectric permittivity, which means that the effect of temperature on the sensor
output is larger in wet soil than in dry soil. A temperature correction function was derived
and tested using two different soil samples. Both samples were exposed to temperature
variations and the corrected apparent dielectric permittivity showed good agreement with
reference TDR measurements and predicted changes in dielectric permittivity as a function of

temperature that were obtained from the CRIM model.

A site specific calibration between the permittivity and soil water content was derived using
the CRIM model for different depths. Although by considering the spatial variability of soil
properties at each sensor unit and soil depth will improve the model accuracy of soil water
content predictions. The large effort required to obtain this additional soil information is too
large considering the modest increase in accuracy of the soil water content measurements.
We did not consider the CRIM model with spatial distributed porosity for the wireless sensor

network.
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In future, the accuracy of the SPADE sensor will be further tested in the field. Since we have
already installed a wireless sensor network consisting of SPADE sensors at the Rollesbroich
test site, the temperature correction function will be tested with continuous field
measurements under natural conditions. The improved soil water content measurements at the
catchment scale will be ultimately used to improve hydrological understanding of this small
headwater catchment and to validate high resolution remote sensing soil water content

products.
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3 Effects of soil hydraulic properties on the spatial variability of soil water content:

evidence from sensor network data and inverse modeling

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, G. Martinez, Y. A.
Pachepsky, H. Vereecken. Effects of soil hydraulic properties on the spatial variability of soil
water content: Evidence from sensor network data and inverse modeling. Vadose Zone

Journal, 2014, 13(12). doi: 10.2136/vzj2014.07.0099.
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3.1 Objectives

The objective of this study was to analyze an extensive soil water content data set acquired
with a wireless sensor network in the Rollesbroich catchment (Germany) in order to
investigate whether spatial variability of soil water content is related to spatial variation in
soil hydraulic properties. The soil hydraulic parameters were inversely estimated from
measured soil water content time series using information on the distribution and correlation
of hydraulic parameters derived from the Rosetta program. The spatial variation in inversely
estimated hydraulic parameters was then compared to the spatial variation of soil water

content and saturation degree as expressed by the MRD.

3.2 Introduction

Understanding spatial variation of soil water content is important in a multitude of
hydrological and engineering applications (Bogena et al., 2010; Vereecken et al., 2007).
However, characterizing the spatial variation of soil water content is challenging because it is
affected by the heterogeneity of soil, atmospheric forcing, vegetation, and topography
(Vanderlinden et al., 2012; Vereecken et al., 2008; Vereecken et al., 2014; Zhao et al., 2013).
Nevertheless, accurate characterization of spatial behavior of soil water content is important,
for data assimilation method in hydrological models (Heathman et al., 2003; Pan et al., 2012),
calibration and validation of large scale remote sensing retrievals of soil water content (Choi
and Jacobs, 2007; Famiglietti et al., 1999; Montzka et al., 2011), estimating uncertainty in
hydrological predictions (Heuvelink and Webster, 2001), designing sensor networks and
optimizing the number of sensors (Heathman et al., 2009; Mohanty and Skaggs, 2001), and
upscaling and downscaling of soil water content information (Cosh et al., 2004; Cosh et al.,
2006; Jacobs et al., 2004).

42



Chapter 3

One of the most widely used methods to investigate spatial behavior of soil water content is
the statistical analysis of the MRD to characterize spatial variability in combination with the
analysis of standard deviation of the relative differences (SDRD) to describe rank stability.
This type of statistical analysis is commonly referred to as temporal stability analysis. The
concept of temporal stability was first proposed by Vachaud et al. (1985) to determine
representative locations within a field in order to improve sampling efficiency while
maintaining accuracy. More recently, it has also been used to describe the persistence of
spatial patterns and to characterize the behavior of soil water content variability (Pachepsky

et al., 2005; Vanderlinden et al., 2012).

The majority of studies dealing with the spatial variability of soil water content rely on few
snapshots of soil water content variation in time that ideally include both wet and dry
conditions (Avila et al., 2010; Brocca et al., 2009; Grayson and Western, 1998; Schneider et
al., 2008b; Starks et al., 2006). Soil water content observations with high measurement
frequency and over a large range of saturation conditions enable more comprehensive
investigations of spatial behavior of soil water content (Cosh et al., 2008; Cosh et al., 2006;
Mittelbach and Seneviratne, 2012). Wireless sensor network technology is ideally suited to
provide such continuous measurements of soil water content at the catchment scale (Bogena

etal., 2010; Qu et al., 2013).

Although a large number of publications on spatial variability of soil water content already
exist, the controlling factors are still not well understood. Previous studies have shown that

multiple factors, such as climate (Martinez et al., 2014), topography (Biswas and Si, 2011;
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Hu et al., 2010a), soil properties (Martinez et al., 2013; Williams et al., 2009), and vegetation
(Gomez-Plaza et al., 2001; Mohanty and Skaggs, 2001) affect the MRD of soil water content,
and that these factors tend to interact (Baroni et al., 2013; Vanderlinden et al., 2012).
Vachaud et al. (1985) were the first to suggest that soil texture affects the temporal stability
and this was confirmed by Hu et al. (2010a). Gomez-Plaza et al. (2001) also found that soil
texture together with slope were the main factors controlling MRD of soil water content in a
semi-arid catchment with sparse vegetation. Cosh et al. (2008) reported that dry bulk density,
clay content and sand content explained nearly 50% of the temporal stability, and that
topographical effects were less important in defining representativeness and stability. Since it
is well established that soil texture is correlated with soil hydraulic properties (Schaap et al.,
2001; Vereecken et al., 2010; Wosten et al., 1999), it can also be expected that soil hydraulic

properties affect spatial behavior of soil water content.

Spatially distributed simulations have been used to investigate to what extent soil hydraulic
properties affect the MRD of soil water content. For instance, Kim and Stricker (1996) used
independent soil columns with spatially random fields of vertically uniform hydraulic
characteristics and showed that the heterogeneity of soil hydraulic properties has a strong
effect on the mean annual water budget. More recently, Martinez et al. (2013) presented a
simulation study where a linear relationship between saturated soil hydraulic conductivity
and the MRD of soil water content was found. However, this study relied on a simplified
modeling approach based on a lognormal distribution of K, without considering relationships
between K; and other hydraulic parameters. Therefore, it remains unclear whether such
correlations between MRD and soil hydraulic properties can also be expected for real-world

conditions.
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In order to explore potential correlations between soil hydraulic properties and the spatial
variability of soil water content in the field, hydraulic parameters need to be determined at
locations where soil water content is measured using either direct or indirect methods. In case
of direct methods, the hydraulic parameters are estimated by fitting the water retention and
unsaturated hydraulic conductivity curve to experimental data obtained from soil cores in the
laboratory. However, such direct methods are labor intensive and time consuming. If
measured time series of soil water content at several depths are available, inverse modeling
may be an appropriate alternative to obtain in-situ soil hydraulic parameter estimates (Bauer
et al.,, 2012; Ritter et al., 2003; Vrugt et al., 2003; Zhang et al., 2003). Previous inverse
modeling studies that have attempted to estimate soil hydraulic parameters from measured
time series of soil water content have shown that the consideration of information on
correlations between soil hydraulic parameters was useful to retrieve realistic parameter
combinations (Carsel and Parrish, 1988; Mertens et al., 2004; Scharnagl et al., 2011). Such
information can be estimated from basic soil information such as the sand, silt and clay
fractions, bulk density and/or organic matter content by using pedotransfer functions

(Pachepsky et al., 2006; Vereecken et al., 2010; Wosten et al., 2001).

3.3. Materials and Methods

3.3.1 Site description

The Rollesbroich catchment (50°3727"N, 6°18'17"E) is located in the Eifel and covers an
area of 27 ha with altitudes ranging from 474 to 518 m.a.s.l. Mean annual air temperature and
precipitation are 7.7 °C and 103.3 cm, respectively. The dominant soils are Cambisols in the
southern part and Stagnosols in the northern part of the catchment. The grassland vegetation

is dominated by perennial ryegrass (Lolium perenne) and smooth meadow grass (Poa
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pratensis). Our study was focused on the southern part of the catchment with relatively flat
slopes (Figure 3. 1). The average slope of our test site is 1.63° (min.: 0.35°, max.: 3.12°).

Therefore, we expect that lateral soil water redistribution is of minor importance.

+ Soil Samples|
@ SoilNet
4 EC

stream

contour

Figure 3. 1. The Rollesbroich catchment and the soil net locations (red dots), the soil sample
locations (blue dots), the isolines of elevation at 2.5 m intervals (grey lines) and the climate

station (blue triangular).

3.3.2 Soil water content determination

In the framework of the TERENO project (Bogena et al., 2012; Zacharias et al., 2011), the
Rollesbroich catchment has been equipped with a wireless soil water content sensor network
(SoilNet, 2012). The SPADE soil water content probes (sceme.de GmbH i.G., Horn-Bad
Meinberg, Germany; (Hiibner et al., 2009)) were installed at 5 cm, 20 cm and 50 cm depth
along a vertical profile. In order to increase the measurement volume and enable the

examination of inconsistencies (e.g. imperfect contact of sensors with the soil matrix), two
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sensors were installed in each depth with a separation of ~8 cm. Sensor deployment followed
careful installation procedures to reduce subsequent measurement errors (€.g. no sensors were
inserted in direct proximity to worm holes, root holes, cracks, and stones). The SPADE probe
is a ring oscillator and the frequency of the oscillator is a function of the dielectric
permittivity of the surrounding medium, which is strongly depended on the water content of
the soil because of the high permittivity of water (¢,~80) as compared to mineral soil solids
(65=2-9), and air (g,=1). The SPADE probe was calibrated using a two-step calibration
procedure proposed by Jones et al. (2005). In a first step, an empirical model was developed
using laboratory measurements to relate the sensor response to the apparent dielectric
permittivity (Qu et al., 2013). In the next step, the CRIM model proposed by Birchak et al.
(1974) was used to relate apparent dielectric permittivity to soil water content. To adjust the
CRIM model to the soils of the test site, fifteen undisturbed soil samples (length 7.7 cm,
diameter 5.0 cm) were taken from three different depths, ranging from approximately 5 to 13
cm, 20 to 28 cm, and 45 to 55 cm. The volumetric soil water content was determined
gravimetrically and the apparent dielectric permittivity of each sample was determined from
measurements with a CS 640-L 3-rod TDR probe attached to a TDR 100 device (Campbell
Scientific, Logan, UT). The root mean square error (RMSE) associated with soil water

content estimation with the SPADE probe was 0.026 cm’cm™ after the calibration.

After the deployment of the sensor network at the test site, we found that the sensor output
showed pronounced diurnal variations related to temperature. Large differences between the
two closely-spaced measurements at a single measuring point were also observed. After
investigating this in detail, it was established that this behavior was related to the SPADE
data acquisition where the first sensor reading was still affected by a charging capacitor
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within the sensor. If multiple sensor readings were made sequentially without turning off the
sensor, the stability of the measurement considerably improved and the temperature
dependence of the measurements disappeared. To correct these temperature-dependent
oscillations in sensor reading, two readings were sequentially made at each measurement
time for a limited time period. We found that the difference between the first and second
sensor reading was highly correlated with temperature and could be fitted with a sensor-
specific second-order polynomial function. After deriving these correction functions for all
the sensors, we corrected the first measurement of the sensors to obtain consistent time series
of soil water content for all locations. After correction, the measurements from the closely-
spaced sensors at a single measurement location agreed well with each other (see Appendix

B).

In this study, we used the time series of soil water content and soil temperature measured
from 1% May 2011 to 1* March 2013. Soil samples were taken at the locations where the soil
sensors are installed using COBRA cores (length: 100 cm, diameter 8 cm; Carl Hamm
GmbH, Essen, Germany). In total, 273 soil samples were taken from three horizons of the
soil profile. The textural composition, organic carbon content, and bulk density were

determined using standard laboratory procedures (Table 3. 1).
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Table 3. 1. Descriptive of statistics of soil properties for the 273 soil samples in Rollesbroich

catchment.
Clay Sand silt dB“l.k Carbon ity
% % % en51_t3y conte_{lt (cm3cm'3)
(gem™) (gkg™)
seq  Mean 18.99 19.90 61.10 0.94 54.47 0.65
std 2.00 3.82 3.79 0.12 15.82 0.05
T 18.03 20.76 61.20 1.28 34.08 0.52
std 1.99 4.03 3.46 0.15 16.84 0.05
S0y Mean 16.50 22.00 61.50 1.52 11.22 0.43
std 2.40 5.68 4.53 0.16 6.01 0.06

3.3.3 Temporal stability analysis

Temporal stability analysis uses the mean and standard deviation of relative differences
(RDs) expressed as MRD and SDRD of soil water content (Vachaud et al., 1985) to describe
the spatial pattern of soil water content in the catchment. The RD of soil water content are
computed from individual measurements of soil water content in location i at time j (¢;;) and
the areal mean soil water content at a given time (51-). In particular, the relative difference for
location i at time j is calculated by:

0i;— 6,

RD _
6;

where Ej = %Z’i\’zl 0;;, and N is the number of the measurement locations. The MRD for

location i is calculated by:

T
1
j=1

where T is the total number of measurements at each location. The SDRD for location i is

calculated using:
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T 2
SDRD; = ZM Eq.3.3

, T-1

j=1
The value of SDRD serves as a measure of the robustness of the temporal stability analysis. A
measurement location with a MRD close to zero provides a good direct estimate of the areal
average of soil water content throughout time, whereas a small SDRD indicates that the MRD

was relatively constant in time. Cosh et al (2006) proposed that a location can be defined as

temporally stable when it shows a SDRD less than 30 %.

Spatial variation in soil water content pattern can be characterized by the standard deviation

of the MRDs (SDMRD):

2

SDMRD = Eq. 3.4

1
Y, (MRD; — 5 £y MRD;)
. -1

i

where %2?]:1 MRD; is the mean MRD.

Using the methods outlined above, we also applied the temporal stability analysis to the

saturation degree of soil water content. The saturation degree (SD) is defined in Eq. 3. 5:

SD =— Eq.3.5

9, d
We assume that the highest measured soil water content at each location corresponds to the
saturated water content (6;). This is reasonable given the long measurement time and the wet

winter seasons in Rollesbroich catchment characterized by high precipitation and low

evapotranspiration rates (see Figure 3. 2).
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3.3.4 Hydrus-1D simulation

We used a numerical solution of the one-dimensional Richards equation as implemented in
the HYDRUS 1-D software (Simunek and van Genuchten, 2008; Simunek et al., 2008b) to

simulate soil water dynamics for a 1D flow domain with a vertical length of 100 cm:

0 0 oh
-2 e Eq.3.6
3t = 3, K-+ 1) q

where K (cm day™) is the soil hydraulic conductivity, 4 (cm) is the pressure head, ¢ (day) is
time, and z (cm) is the vertical coordinate. The soil hydraulic conductivity is described by the

van Genuchten-Mualem (VGM) model (van Genuchten, 1980):

K(h) = K85 [1- (1- sel/m)m]z Eq.3.7

_GT ; .

= - <
Se(h) =46, — 0, (1 + [ah|™)™™, forh<0
1 ) forh> 0

where K; is the saturated soil hydraulic conductivity (cm day’l), Se(h) is the effective

Eq.3.8

saturation, 6, and 6, (cm’cm™) are the residual and saturated soil water content, a (cm™), n
and m=1-1/n (dimensionless) are empirical shape parameters for fitting the soil water

retention function.

The simulation period was from 1* January 2011 to 1** March 2013. Since soil water content
is generally high during the winter season in the Rollesbroich catchment, the initial soil
profile for HYDRUS 1D was set to be saturated. We tested different spin-up periods and
found that a 4-month period with actual meteorological data was sufficient long to prevent
the model results being affected by the initial conditions. The reference potential
evapotranspiration (ET;) was computed by the Penman-Monteith equation using global

radiation, wind speed, relative humidity and air temperature (Jensen et al., 1997). These
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variables were obtained from a nearby micrometeorological station. Potential evaporation (E)
and transpiration (7) were separated based on the leaf area index (LA/) (Simunek et al.,
2008a):

T = ETy(1 — e~k+LAD) Eq.3.9

E = ETye **LAl Eq.3.10

where k is a parameter (-) that governs the radiation extinction of the canopy, which depends
on the sun angle, the distribution of plants, and the arrangement of leaves. Here, we use k =
0.49 as a representative value for grassland (Simunek et al., 2008a). Time series of LAl were
derived from RapidEye images using the NDVI approach (Myneni et al., 1997), detailed
information about the procedure can be found in Ali et al (2013). The agricultural
management of the different fields in the Rollesbroich catchment is very similar.
Heterogeneity of the grass cover is mainly caused by different mowing times, which typically
vary only by a few days. Therefore, we assume that the grass cover is homogeneous on the

long-term in our catchment.

Daily data on precipitation, evaporation, and transpiration were used to set the upper
boundary condition for the HYDRUS-1D simulation. The lower boundary was set to be a
seepage face since the relatively thin soil layer overlays a fractured solid bedrock containing
water conducting fissures. The root density was set to decrease linearly from a maximum
value at the soil surface to zero at 50 cm depth, and root water uptake was computed by the

Feddes approach (Feddes et al., 1976) implemented in HYDRUS-1D.
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3.3.5 Estimation of soil hydraulic parameters using inverse modeling

Inverse modeling was used to estimate the effective VGM parameters from measured time
series of soil water content at 5, 20, and 50 cm depth. For this, we coupled the SCE-UA
algorithm of Duan et al. (1992) to HYDRUS-1D. The objective function that was minimized

by the SCE-UA algorithm was computed as following:

T

OF =" (5 =, Eq. 11

j=1

where the vector ¥ = [¥sem» Y20em» Y50em] contains daily observations of soil water content,
and the vector Y = [Vsem» Y20ems Ysoem] contains daily HYDRUS-1D predictions of soil water
content, x=(6,, a, n, K;) is the vector containing the VGM parameters, j is the measurement
time and 7 is the total number of measurements. 6, is not part of vector x since it was
estimated from the highest measured water content. This inverse modeling approach was

used to estimate hydraulic parameters for each of the 41 SoilNet locations show in Figure 3. 1.

The parameter searching space of SCE-UA was constrained using a multivariate normal
distribution of the VGM parameters that was derived using Rosetta (Schaap et al., 2001) from
measured sand, silt, clay content, and dry bulk density for 273 soil samples taken in three
depths (0-10 cm, 10-20 cm, and 20-40 cm) in the Rollesbroich catchment (Figure 3. 1). The
mean, standard deviation, and correlation matrix that summarize this multivariate normal
distribution of VGM parameters are shown in Table 3. 2. In order to consider this
multivariate normal distribution in the inverse modeling, the SCE-UA algorithm was
modified in two steps. First, the initial set of random parameters was drawn from the
multivariate normal distribution summarized in Table 3. 2. Second, it was evaluated whether
the intermediate parameter sets proposed by SCE-UA fall within the multivariate normal
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distribution. This was achieved by using the Mahalanobis distance (Farber and Kadmon,

2003):

D= —p'SIY —p) Eq. 12

where D is the Mahalanobis distance, Y is a vector with the proposed parameter set, x is a
vector with the mean of the multivariate normal distribution (Table 3. 2), and S is the
associated covariance matrix. Farber and Kadmon (2003) have shown that the Mahalanobis
distance (D) of random draws from a multivariate normal distribution follows a z’
distribution with x-1 degrees of freedom (x is the number of variables). In our case, this
means that parameter sets with Mahalanobis distances larger than 13.28 are unlikely to be
associated with a draw from the multivariate normal distribution (p=0.01). Therefore,
intermediate parameter sets with a Mahalanobis distances larger than 13.28 were discarded in
SCE-UA and replaced with a new parameter set that was randomly drawn from the
multivariate normal distribution summarized in Table 3. 2. It is important to realize that SCE
works with a population of parameter sets and many different proposal points are generated.
Therefore, the overall convergence of SCE is not jeopardized by our treatment of proposal

points outside of the specified multivariate normal distribution.

Table 3. 2. Mean values, standard deviations, and correlation coefficients of soil hydraulic

parameters predicted by Rosetta using soil texture and bulk density from Rollesbroich

catchment.
Correlation coefficients
parameter unit mean std logio(Ks) 0. logio(a) m
logio(K;) cmday' — 1.60 0.52 1
0, em’ecm™  0.07 0.01 0.89 1
logio(ax) cm’ 226 0.11 -0.63  -0.63 1
n - 1.65 0.08 0.62 0.60 -0.98 1
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3.4. Results and discussion
3.4.1 Time series data of weather conditions and soil water content

Time series of precipitation, evapotranspiration, mean and standard deviation of soil water
content are presented in Figure 3. 2. During the observation period from 1% May 2011 to 1%
March 2013, total precipitation and potential evapotranspiration were 228.2 cm and 121.8
cm, respectively. Overall, soil water content at 5 cm and 20 cm depth depended strongly on
precipitation events. Especially in the top soil, a steep rise of soil water content can be
observed after rainfall events, which was followed by a slow recession during periods without
precipitation. For all depths, the lowest soil water contents were observed during May 2011,
because precipitation was low (2.9 cm) and evapotranspiration was relatively high (9.5 cm).
The soil water content was lowest near the surface in this time period, most likely because
root water uptake is generally larger in topsoil than in subsoil, especially in the case of
grassland which typically shows a very high root density near the surface. In December 2011,
precipitation was relatively high (20.7 cm) and evapotranspiration was low (0.5 cm) leading
to nearly saturated soils. Since electromagnetic sensors cannot determine soil water content in
partly frozen soils, we excluded the period from 10™ January 2012 until 26™ February 2012

from our analysis.
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Figure 3. 2. Daily time series of precipitation, potential evapotranspiration (1* January 2011 -
1™ March 2013), spatial mean and standard deviation (std) of soil water content (SWC) at 5,

20 and 50 cm depths (1* May 2011 - 1* March 2013), respectively.

Spatial variability of measured soil water content was higher at 50 cm depth compared to 5
cm and 20 cm depths as indicated by the temporal dynamics of the standard deviation of soil
water content presented in Figure 3. 2 (bottom panel). We attribute this to the pedological

situation (shallow soil above consolidated bedrock) in which the highly variable stone content
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in the subsoil leads to considerable spatial variability of soil water content at 50 cm depth. A
similar increase in standard deviation with depth has also been observed in the nearby forest
test site in Wiistebach with a similar pedological situation (Rosenbaum et al., 2012). In
contrast, the standard deviations at 5 cm and 20 cm depth are much smaller in Rollesbroich
than those observed in the Wiistebach test site. One reason for the lower spatial soil water
content variability at the Rollesbroich test site is the fact that the topsoil has become more
homogeneous through former agricultural land use. In addition, the homogenous grass cover
and the relatively flat slopes of the Rollesbroich site also lead to lower spatial variability in
soil water content as compared to the Wiistebach site with its locally variable vegetation
coverage and steeper slopes. Yet another reason is that the spatial variability of infiltration
was larger in the Wiistebach test site because canopy interception and associated leaf drip

lead to heterogeneous throughfall patterns in forests.

3.4.2 Observed MRD and SDRD

Figure 3. 3 shows the ranked MRDs and their variability for the 41 SoilNet locations.
Similarly, the MRDs and their variability for saturation degree are shown in Figure 3. 4. All
SDRDs values were smaller than 30 %, indicating temporal stability for all locations (Cosh et
al., 2006). The SDRDs were lower at 20 and 50 cm than at 5 cm, indicating that the subsoil
was more temporally stable than the topsoil. This result corresponds well with previous
studies (Guber et al., 2008; Hu et al., 2010b; Starks et al., 2006). This decreasing SDRD with
increasing soil depth was attributed to the decreasing impact of root water uptake of crops
with depth, whereas pedogenetically derived variations in the deeper layers preserved a rather
stable pattern of spatial variation through time. The range of MRDs of soil water content
increased with depth, i.e. 0.65, 0.54 and 0.84 at depths of 5, 20, and 50 cm, respectively.
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These results are consistent with the standard deviation of soil water content (Figure 3. 2),
which already showed that the top soil is more homogeneous than the subsoil. In the
Rollesbroich catchment, spatially variable soil layering probably leads to pronounced
differences in soil water content at the same depth in different locations. An increase of
SDMRD (i.e. 0.12, 0.12, and 0.22 at 5, 20, and 50 c¢m, respectively) with depth was observed
in our study. Similarly, other studies found that the temporal stability of soil water storage
was less pronounced in shallow soil layers (Cassel et al., 2000; Gao and Shao, 2012; Kamgar

et al., 1993; Martinez et al., 2010).
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Figure 3. 3. Ranked MRDs (dots) and SDRDs (vertical bars) of soil water contents in

Rollesbroich at 5, 20 and 50 cm depths, respectively.

58



Chapter 3

08T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

0.4

11:11111111IIIIIIIIIIzIzzIzIIIIIIIIIIIIII

-0.4 i

MRD SD 5¢m
=]

miIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEI:IIIIIIIIf

MRD SD 20cm

i IIIIIIzIIII:{IIzzIIzIIIIIIIIIIIIIIIIIIIII

-0.4

MRD SD 50cm

) J S A A s

Figure 3. 4. Ranked MRDs (dots) and SDRDs (vertical bars) of saturation degrees in

Rollesbroich at 5, 20 and 50 cm depths, respectively.

The MRDs of saturation degree showed the same tendency as the MRDs of soil water content,
but the ranges of MRDs of saturation degree were less variable for different depths (0.31,
0.37 and 0.41 at 5, 20, and 50 cm, respectively). The corresponding SDMRD of saturation
degree were 0.08, 0.08 and 0.11 at 5, 20, and 50 cm, respectively. This indicates that the
variability of saturation degree was lower in general and as a function of depth than that of
soil water content. Moderate correlations were observed between the ranked MRDs of soil
water content and saturation degree at 5, 20, and 50 cm depth with correlation coefficients of

0.81, 0.66, and 0.72, respectively.
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3.4.3 Evaluation of estimated hydraulic parameters
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Figure 3. 5. Observed mean time series soil water contents of the 41 locations (solid lines);
mean of inverse simulated soil water content (dashed lines) at 5, 20 and 50 cm depths,

respectively.

Modelled soil water content obtained using inversely estimated hydraulic parameters were in
good agreement with the observed dynamics of soil water content. The mean simulated soil
water content matched well with the mean observed soil water content (Figure 3. 5) as
indicated by the RMSE of 0.037, 0.029, and 0.027 cm’cm™ and the R? of 0.922, 0.921, and
0.894 for 5, 20, and 50 cm, respectively. When considering simulated and measured soil

water content at all 41 locations, the RMSE was never higher than 0.08 cm’cm™ and often
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much better, and the R* was always larger than 0.75 (Figure 3. 6). The pairwise scatter plots
of inversely estimated VGM parameters are shown in Figure 3. 7. The ellipses represent the
multivariate normal distribution used to constrain the parameter search. The Mahalanobis

distance of all inversely estimated VGM parameter sets was smaller than 13.28 as prescribed.
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Figure 3. 6. Empirical cumulative probability distributions of RMSE and R? of inverse

simulated and observed soil water content for three soil depths.
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Figure 3. 7. Pairwise scatter plots of soil hydraulic parameters estimated by inverse. The blue
ellipses approximately indicate parameter range of the multivariate distributions derived from
the 273 soil samples (Figure 3. 1) from our field. The colored dots represent the estimated
soil hydraulic parameters at 5 cm (blue), 20 cm (black), and 50 cm (red) depths for our 41

SoilNet locations.

3.4.4 Relationships between soil hydraulic properties and MRDs

The MRDs of soil water content showed a strong positive correlation with 6 for all depths,

indicating that locations with a high 6, are associated with higher soil water contents and
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locations with low 6, associated with lower soil water contents (Table 3. 3 and Figure 3. 8).
Obviously, this reflects the direct link between 6 and soil water storage capacity. Moreover,
the MRDs of soil water content were positively correlated with the a parameter, and
negatively correlated with the n parameter. That is because larger o parameters and smaller 7
parameters typically are associated with poorly draining soils, which consequently have
higher soil water content. In agreement with Martinez et al. (2013), we also found a negative
correlation between MRDs of soil water content and K;. However, our correlation is much
weaker. Correlations between MRDs of saturation degree and soil VGM parameters are
presented in Table 3. 3 and Figure 3. 9. The obtained correlations between MRDs of
saturation degree and VGM parameters were similar to the correlations obtained for soil
water content (Figure 3. 8). However, the relationship between MRDs of saturation degree
and O; was less pronounced, whereas the MRDs of saturation degree was correlated more

strongly with the a and n parameters that determine the shape of the VGM model.

Table 3. 3. Correlation coefficients between the MRDs of soil water content and saturation

degree and VGM parameters obtained using inverse modeling.

5cm  20cm 50cm S5cm 20cm  50cm

MRD@)-6, 0.03  0.42%* 0.52% MRD(SD)- 6, 0.06 0.20 0.47*

MRD@)- 6, 0.71* 0.76* 0.93%* MRD(SD)- 6, 0.16 0.14 0.69*

MRD@)-a -0.45*% -0.34*% -0.56* MRD(SD)-a  -047* -0.43* -0.61%

MRD@)-n  0.46* 0.26* 0.51* MRD(SD)- n 0.47* 0.34* 0.56*

MRD@)- K, -024 -0.18 -0.17 MRD(SD)- K,  -0.16 -0.10 -0.13
*Significant at p<0.05.
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Figure 3. 8. Correlation between MRDs of soil water content and soil hydraulic parameters

(6,, b, logio(a), n, and log;o(Ky)) at 5, 20 and 50 cm depths, respectively.
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The analysis presented here was inspired by Martinez et al. (2013) who found that MRDs of
soil water content and log;o(K;) were strongly negatively related in a study using numerical
simulations. In another synthetic study of Wang (2014), it was found that the MRDs of soil
water content correlates with 6, and with » for fixed 6, under semi-arid climate conditions.
However, our findings based on experimental data suggest that the results from synthetic
studies cannot be transferred directly to real world conditions. In contrast, we found that also
other VGM parameters are more or less correlated with the MRDs of soil water content and
saturation degree. Our results indicate that 6, and the parameters describing the shape of the
water retention and hydraulic conductivity functions are more important than the value of K.
This finding is also supported by the study of Vereecken et al. (2007), who demonstrated that
the pore size distribution parameter n has the strongest effect on the spatial variability of soil
water content. However, it should be kept in mind that this study is restricted to the silt loam
textural class, and that other texture classes might lead to different relationships between

MRD and soil hydraulic properties.

3.5. Conclusions

We analyzed the temporal stability of in-situ soil water content observed by a wireless sensor
network at three depths at the TERENO test site Rollesbroich. Temporally stable
characteristics were found both in soil water content and saturation degree. We suggest that
both soil water content and saturation degree should be considered in future temporal stability
studies when the porosity is known to vary considerably, as it is one of the most important

factors that affect water storage and infiltration characteristics in soil.
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Our inversely estimated VGM parameters were constrained by a multivariate normal
distribution derived using pedotransfer functions from measured sand, silt, and clay content
in addition to bulk density. Modelled soil water content agreed well with the observed soil
water content dynamics in all soil depths. The corresponding RMSE was always smaller than

0.08 cm’cm™ and the R? was always larger than 0.75 for the 41 SoilNet locations.

The spatial variability of soil water content as expressed by the MRDs of soil water content
and saturation degree were correlated with the spatial variation in hydraulic parameters in our
catchment. We found strong positive correlations between MRDs of soil water content and
the 6, and n parameters of the VGM model for all three soil depths. Moreover, we found
negative correlations between MRDs of soil water content and the soil hydraulic properties o
and K;. In addition, the MRDs of saturation are only strongly correlated with the soil

hydraulic properties o and n parameter that determine the shape of the VGM model.

In this study, we only analyzed soil water content dynamics and soil hydraulic parameters of
silt loam soils. Future studies should extent our analysis to other soil textural classes and
climate conditions in order to further explore the limitations and potentials of this approach.
Furthermore, the MRD of soil water content and saturation degree is known to be determined
by a number of physiographic factors that affect the vertical and lateral redistribution of soil
water. Although factors that influence vertical redistribution are understood relatively well,
the factors that cause lateral redistribution are not yet well quantified. In future studies, the
effect of topography on the MRD of soil water content and saturation degree should be

considered in addition to the heterogeneity of soil hydraulic properties.
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4 Predicting sub-grid variability of soil water content from basic soil information

This chapter has been published as: W. Qu, H. R. Bogena, J. A. Huisman, J. Vanderborght, M.
Schuh, E. Priesack, H. Vereecken. Predicting subgrid variability of soil water content from
basic soil information. Geophysical Research Letters, 2015, 42 (3). dio: 10.1002/2014GL

062496
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4.1 Objectives

In this chapter, we first derive a closed-form expression for the gy(<6>) relationship using
stochastic analysis of 1D unsaturated gravitational flow based on the VGM model. A
sensitivity analysis is presented to identify the effect of VGM parameters on the gy(<6>)
relationship. Next, the predictions of the novel closed-form expression for oy(<6>) are
evaluated using eight datasets of observed oy(<6>) relationships obtained at test sites with a
wide range of using VGM parameters as determined from pedotransfer functions that rely on
available basic soil data. Finally, we inversely estimate the variability of hydraulic properties

from observed oy(<6>) data.

4.2 Introduction

Sub-grid variability of soil water content is known to be an important control on the
magnitude of land-surface energy fluxes (Bonan et al., 1993; Hu and Islam, 1998; Ronda et
al., 2002) and hydrologic fluxes such as runoff (Arora, 2001; Gedney and Cox, 2003). An
adequate representation of small-scale soil water content variability in large-scale hydrologic,
weather, and climate models requires information on the relationship between sub-grid soil
water content variability as expressed by the standard deviation (og) and mean soil water
content (<6>) (Teuling and Troch, 2005). Improved ability to predict this relationship from
basic soil information may contribute to a more efficient representation of soil water content
variability in large-scale models, and consequently in more accurate predictions of land

surface processes (Vereecken et al., 2008).
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Reynolds (1970) was the first to derive relationships between measured oy and <0> as well
as other controlling factors, i.e. insolation and rainfall. Since then, numerous field studies
have been carried out to identify factors that control the oy(<6>) relationship. Several studies
found that oy increased with increasing <0> (Famiglietti et al., 1998; Oldak et al., 2002;
Takagi and Lin, 2011), whereas Famiglietti et al. (1999), Hupet and Vanclooster (2002) and
Western et al. (2004) observed the opposite behavior. Moreover, a convex parabolic shape of
the op(<8>) curve with a distinct maximum in the medium range of <6> has been observed

(Choi and Jacobs, 2007; Garcia-Estringana et al., 2013; Rosenbaum et al., 2012).

Widely used methods to investigate the controls on the gp(<6>) relationship include virtual
simulation experiments (Albertson and Montaldo, 2003) and stochastic analysis (Zhang et al.,
1998). Virtual experiments by Albertson and Montaldo (2003) and Teuling and Troch (2005)
showed that the covariances between the soil water state and land surface fluxes (i.e.
infiltration, drainage, evapotranspiration, and horizontal redistribution) act to generate or
destroy spatial variability of soil water content through time. Zhang et al. (1998) used
stochastic analysis to derive an analytical expression that describes the gy(<6>) relationship
for 1D unsaturated gravitational flow using the Brooks-Corey and the Gardner-Russo models
for water retention and hydraulic conductivity. Following Zhang et al. (1998), Vereecken et
al. (2007) demonstrated that the shape of gy(<6>) can be explained to a large extent by the
spatial variance of soil hydraulic properties, although a direct evaluation using measured
0p(<0>) data and information on the spatial variation of hydraulic properties has not been
presented yet. These previous stochastic studies relied on the use of Brooks-Corey or

Gardner-Russo model because of their mathematical tractability. However, it is generally
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accepted that the van Genuchten-Mualem (VGM) model (van Genuchten, 1980) is better

suited to describe experimental soil water retention data.

4.3 Model development

The stochastic approach of Zhang et al. (1998) to describe 1D unsaturated gravitational flow
in a heterogeneous flow domain was used to derive a closed-form expression that describes
09(<0>) as a function of the mean and standard deviation of the soil hydraulic parameters of
the VGM model. The starting point of this derivation is the steady-state simplification of the

Richards equation:

0 oh

—|K(h)(— 1]=0 Eq. 4.1

6x[ ( )(6x+ ) d
where K(h) (cm d) is the unsaturated soil hydraulic conductivity, h (cm) is the pressure
head, and x (cm) is the vertical coordinate. The VGM model to describe the soil water

retention and hydraulic conductivity curves is given by:

0—0, 1

Se(h) = = ,  h<O0
(W) =5 =0, = T+ @hpom b2
m=1-—-—
n
m-2
K(So) = KsS. 5 [1- (1-5")"] ,  h<o Eq. 4.3

For mathematical convenience, the log-transformed saturated hydraulic conductivity (In(Kj))
is used in our study. In our analysis, residual soil water content (0,) is assumed to be constant.
All other variables and parameters, i.e. pressure head (h), soil water content (0), hydraulic
conductivity (K), effective saturation degree (S.), saturated soil water content (0;), saturated
hydraulic conductivity (Ks), and the fitting parameters o and n of the VGM model are
considered to be realizations of a second-order stationary stochastic process, which can be

decomposed into their mean and perturbations. Following the stochastic analysis of Zhang et
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al. (1998), we derived the expression of the mean and covariance of soil water content for 1D
unsaturated gravitational flow in an infinitely long vertical profile using first-order Taylor
expansions. In particular, we related the covariance of soil water content and pressure head to
the variance and covariance of VGM parameters (K, 0, o, and n) using Eq. 4. (1) to (3). For
a detailed derivation we refer to the Supplementary Information. The closed-form expression

for oo(<h>) is:

2 2 2
ar P a40, a30;
0'92 = boz {b120'§ + b22 frPf 10aPa 300 Pn ]

(1 + azpf)az (1 + a2pa)a2 (1 + a2p‘n)a2
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2 2 22
+b3 O-n +b4_ 0-95 + 2b1b2 <_1 +a2pa

a2
2 (-2}
n

_ B (a)(n) ,
where bo - ((95) 97’) <[1+((a)(h))(")]((a)(h))m)(n))’

Eq. 4.4
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This novel closed-form expression describes og(<h>) as a function of the mean (i.e. <0s>,
<In(K)>, <o>, and <n>), the standard deviation (i.e. 6(0s), 6(In(Ky)), o(at), and 6(n)), and the
vertical correlation length (i.e. pinks), Po, and pn) of the VGM model parameters. Using the

following equation, <h> can be transformed into <6>:

Eq.4.5

(a)(h) )((n)((a)(h))w + 1) +o
1+ (aXh)™ )\ (m)(a)h)™ '

In order to assess the importance of the pressure head fluctuations that result from flow in the

(6) = ((65) — 6,) (

heterogeneous soil profiles, we also calculated 6o(<6>) for h'=0 (i.e. assuming that the system
has the same pressure head everywhere) in the Supplementary Information. It is important to
realize that the obtained oy represents variability along a deep vertical profile. Since soil
water content is assumed to be an ergodic second-order stationary stochastic variable, cg in
vertical direction corresponds with o at a certain depth (i.e. spatial variability) if sampling
points are sufficiently far from each other (i.e. sampling points are independent when
separation is more than the horizontal correlation length of the soil properties). It should also
be noted that the vertical water flux is assumed to be identical at every location so that the

effect of lateral water redistribution and variability in surface fluxes is not considered.

4.4 Materials and Methods
4.4.1 Site descriptions

We used eight different datasets from five test sites to evaluate the ability of the closed-form
expression (Eq. 4. 4) to describe observed oy(<0>) data. Detailed information about the test
sites are given in Table 4. 1. Three datasets were obtained using wireless sensor networks
deployed at the TERENO test sites Rollesbroich, Wiistebach, and Scheyern (TERENO,

2012). For these three sites, hourly aggregated soil water content data measured at three
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depths (5, 20, 50 cm for Rollesbroch and Wiistebach, and 10, 30, 50 cm for Scheyern) were
used. In addition, we used datasets that originated from the Inner Mongolia Grassland
Ecosystem Research Station (IMGERS, 1979). Here, water content of the top soil (0-6 cm)
was measured in four experimental plots subjected to different grazing intensity, i.e. ungrazed
since 1999 (ug99), ungrazed since 1979 (ug79), continuous grazing (cg), and heavy grazing
(hg) (Schneider et al., 2008; Schneider et al., 2011). Finally, we used soil water content
measurements (0-30 cm) from the Tarrawarra grassland test site (Australia) that were

presented in detail by Western and Grayson (1998).

Table 4. 1. Characteristics of TERENO (Rollesbroich, Wiistebach, and Scheyern), IMGERS

(ug 99, ug 79, cg, and hg), and Tarrawarra test sites.

Rollesbroich Wiistebach ~ Scheyern IMGERS Tarawarra
Latitude 50°37'N 50°30'N 45°30'N 43°38'N 37°39'S
Longitude 6°18'E 6°19'E 11°45'E 116°42'E 145°26' E
ilt.if;lde (m 515 605 470 1100 76
Average slope 1.6 3.6 5.7 1.9 1.1
Maximum slope 3.1 10.4 13.5 2.2 5.8
Land use grassland forest grassland grassland grassland
Area (ha) 13.5 27.0 5.3 1.8 10.8
Pav (cm) 103 111 83 35 82
Tav (°C) 7.7 7.0 7.4 2.3 12.0
Start time 01.052011 01.072009 01.102012 2004 1995
End time 01.052012 01.072012 01.102013 2006 1996
Interval 15 min 15 min 15 min 6 days* ~monthly

i ug99 ug79 cg h

i‘;‘;}l’g of soil 273 34 54 io fs si 9§ 34

* It was irregularly measured from June to September during the vegetation period.

*Tav: annual average temperature, Py: annual cumulative precipitation.
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We used Rosetta (Schaap et al., 2001) to estimate the mean and standard deviation of VGM

parameters (Table 4. 2) from measured sand, silt, clay content, and bulk density obtained

from in-situ samples taken at all test sites (Figure 4. 1). Although these soil samples were not

always taken at the exact position where soil water content was measured, we assume that the

ensemble mean and standard deviation adequately represent each test site. As co(<0>) is

typically not sensitive to the correlation length of In(Ks), a, and n (Vereecken et al., 2007),

we assumed a fixed correlation length of 10 cm in our study.

Table 4. 2. Mean and standard deviations of VGM parameters predicted by Rosetta for the

TERENO, IMGERS, and Tarrawarra test sites.

<0> <0  <o> <n> <In(K)>

odem®  em? . omd” 6(6) o(@ om) o(ln(Ky)
S5cm  0.06 0.54 0.006 1.65 3.70 0.05 0.002 0.08 1.21
Rollesbroich 20cm 0.06 0.44 0.005 1.67  3.50 0.04 0.001 0.04 0.70
50cm 0.05 038 0.007 1.58 2.52 0.04 0.003 0.10 0.70
Sem 0.12 0.77 0.010 140 4.14 0.08 0.003 0.16 0.70
Wiistebach  20cm 0.10 0.70 0.010 1.40 4.17 0.10 0.003 0.16 0.70
50cm 0.10 0.66 0.010 1.40 4.14 020 0.003 0.16 0.70
Scm  0.04 052 0.029 146  4.68 0.06 0.005 0.14 0.59
Scheyern  20cm 0.05 0.44 0.028 1.48 3.69 0.04 0.006 0.16 0.67
50cm 0.05 042 0.028 1.55 3.34 0.04 0.009 042 1.25
ug99 0.00 048 0.010 1.53 4.50 0.04 0.003 0.04 0.40
% ug79 6 em 0.00 0.52 0.010 1.51 5.06 0.04 0.003 0.04 0.35
% cg 0.00 045 0.010 150 3.96 0.02 0.003 0.03 0.19
hg 0.00 044 0.013 150 4.00 0.04 0.003 0.03 0.20
Tarrawarra 30cm 0.10 0.50 0.010 1.48 2.51 0.02 0.004 0.13 0.31
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Figure 4. 1. USDA soil texture triangle displaying and soil texture distribution of samples
taken from the three TERENO test sites (Rollesbroich, Wiistebach and Scheyern), the four

IMGERS experimental test sites (ug99, ug79, cg, hg) and the Tarrawarra test site.

4.5 Results and Discussion
4.5.1 Sensitivity analysis of soil hydraulic parameters on 64(<6>) relationship

Figure 4. 2 presents the sensitivity of the oy(<6>) relationship to changes in the variability of
In(Ks), 6s, o, and n as expressed by the coefficient of variation (CV). The mean VGM
parameters were taken from the Rollesbroich test site at 5 cm depth (Table 4. 2). This sensitivity
analysis suggests that oy(<6>) is most sensitive to the n parameter, followed by /n(Kj), 0;,
and a, respectively. The results of the sensitivity analysis were similar for other soil textures,
although the difference in sensitivity between the VGM parameters decreased with increasing
sand content (results not shown). This finding is in good agreement with the results of
Vereecken et al. (2007). They found that oy(<6>) was most sensitive to the 1 parameter of the
Brooks-Corey model, which is related to pore size distribution just as the n parameter of the

VGM model. It has to be noted that the derived curves for different levels of variability in the
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n parameter show a second increase of gy for <@> larger than 0.5, which becomes more
distinctive with increasing CV. Such an increase is typically not observed in actual gy(<6>)
data (e.g. Figure 4. 3). We attribute this model behavior to the first-order Taylor expansion
approximation which was used to derive Eq. 4. . Consequently, the model results will be less

reliable for high values of <@>, especially in the case that the n parameter is highly variable.
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Figure 4. 2. The effect of variability of VGM parameters (In(Ky), s, a, and n) on ap(<0>)
curve for silt loam soil using six different degrees of variability expressed as coefficient of

variation.

4.5.2 Prediction of the 6y(<6>) relationship from soil texture data

Figure 4. 3 shows the measured and predicted 6y(<6>) relationships obtained using Eq. 4. 4
with the mean and standard deviation of the VGM parameters estimated from Rosetta (Table
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4. 2). Although the test sites span a wide range of climatic conditions and soil textures, the
general behavior of 6y(<0>) was well captured by the closed-form expression despite obvious
simplifications in the model derivation. Predicted cg(<6>) at the Wiistebach test site was
generally high because of the high values for <6 and o(n) (see Table 4. 2). A continuous
increase of op(<0>) without an obvious maximum at intermediate soil water content was
observed at the Rollesbroich test site (5 cm), and this behavior was also predicted by our
closed form-expression. This is related to the high predicted value of o(In(Ks)) (Table 4. 2)
for this site. At the Scheyern test site, an abrupt increase in soil water content variability was
observed at 50 cm depth as compared to the shallower soil depth, and this is also nicely
captured by the closed-form expression. Table 4. 2 shows that this increase is caused by the

high value of &, at this depth.

In order to assess the effect of the pressure head fluctuations on the predicted oyp(<0>), we
also calculated cg(<6>) neglecting variations in pressure head (h'=0). We found that c(<6>)
did not depend strongly on pressure head fluctuations in dry conditions (Figure 4. 4). This
implies that variability in soil hydraulic properties dominates op in this soil water content
range, and also explains the good fit to the observed data despite the fact that gravitational
downward water flow is not likely to occur in the dry water content range. Pressure head
fluctuations were more important in wet conditions, especially in soils with high sand content

(Figure 4. 4).
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Figure 4. 3. Field observed cy(<6>) data from the three TERENO test sites (Rollesbroich,
Wiistebach and Scheyern), the four IMGERS experiment sites (ug99, ug79, cg and hg), and

the Tarrawarra test site as well as the forward and inverse estimation results.

78



Chapter 4

ﬁrO.Z 0.4 0.2 0.2
g o n Ks 65
o
g
2,
@0.1 0.2 0.1 0.1
5]
= 0 0 : 0 0
» 0 0102030405 0 0102030405 0 0102030405 0 0102030405
_02 0.2 0.6 0.2
R o n K 0
E 8 8
mO
= 0.4
=2
ol 0.1 0.1
5 0.2
] s
g
» 7 s

0—= 0 ; i 0 0
0 0102030405 0 0102030405 0 0102030405 0 0102030405
<0>, [cm3cm'3] <>, [cm3cm'3] <0>, [cm3cm'3] <0>, [cm3cm'3]

[—CV=01 —CV=03 —CV=06 " CV=0.1,h'=0 = CV=0.3,h'=0 "~ CV=0.6,1'=0 |

Figure 4. 4 The effect of variability of VGM parameters (a, n, In(Ks), and 0s, parameters are
from Rosetta) on og(<6>) curve for silt and sand using three different degrees of variability
expressed as coefficient of variation. Solid lines indicate the original closed-form expression

(h' # 0) and dashed lines indicate the simplified version neglecting pressure head variation

(0 = 0).

Noticeable deviations between observed and predicted c¢(<0>) can also be observed as well
in Figure 4. 3. For example, c¢(<6>) at 5 cm depth at the Wiistebach test site and G(<6>) at
20 and 50 cm depth in the Rollesbroich test site were clearly underestimated. This can be
explained by several factors. First, both the soil hydraulic parameter estimates obtained from
the pedotransfer functions and the closed-form expression are only approximations. Second,
the 0p(<0>) relationship is not only affected by soil hydraulic parameters but also by the
interplay between evapotranspiration, interception, infiltration and lateral redistribution

amongst other factors.
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Compared to the other test sites, the IMGERS plots are considerably smaller and relatively
homogeneous, which is reflected in the relatively small standard deviation of the VGM
parameters (Table 4. 2). This results in comparably small predicted co(<0>) values for the
IMGERS plots, which is in good agreement with measured cy(<6>) values as indicated by the
R%-values that ranged between 0.55 and 0.84, and root mean square error values ranged
between 0.005 cm’cm™ and 0.006 cm’cm™ (Table 4. 2). The good match between
observations and predictions at this test site is likely related to the lack of lateral water fluxes
and the relatively homogeneous vegetation within each treatment, which suggests that 6y(<6>)

is likely dominated by the variability of the soil hydraulic properties.

The soil texture at Tarrawarra covers several soil textural classes (Figure 4. 1). However, the
predicted values for the hydraulic parameters and their variability are similar to those found
for the IMGERS plots despite the considerably larger area of Tarrawarra, except for <In(K)>
which is not included in the closed-form expression (Eq. 4. 4). Therefore, the predicted
09(<0>) values at Tarrawarra are also relatively low compared to the TERENO test sites in
Figure 4. 3. Interestingly, Tarrawarra is the only test site where the closed-form expression
overestimates Gg(<6>). This might be an indication for processes compensating soil water
content variability (e.g. higher transpiration rates in wetter parts of the Tarrawarra site or

lateral water redistribution during wet seasons).

On the other hand, noticeable deviations can be observed as well in Figure 4. 3. For example,
0p(<60>) at 5 cm depth at the Wiistebach test site and oy(<6>) at 20 and 50 cm depth in the

Rollesbroich test site were clearly underestimated. This can be explained by several factors.
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First, both the soil hydraulic parameter estimates obtained from the pedotransfer functions
and the closed-form expression are only approximations. Second, the gy(<6>) relationship is
not only affected by soil hydraulic parameters but also by the interplay between

evapotranspiration, interception, infiltration and lateral redistribution amongst other factors.

Table 4. 3. Correlation coefficients between observed and simulated oy values.

Forward Inverse
R RMSE R RMSE
S5cm 0.76 0.007 0.79 0.007
Rollesbroich 20 cm 0.08 0.019 - -
50 cm 0.22 0.021 - -
5cm 0.55 0.020 0.77 0.014
Wiistebach 20 cm 0.64 0.006 - -
50 cm 0.56 0.011 - -
10 cm 0.72 0.008 0.86 0.006
Scheyern 20 cm 0.77 0.027 - -
50 cm 0.43 0.014 - -
ug99 0.55 0.007 0.72 0.006
& ug79 0.84 0.007 0.88 0.006
(g cg 0-6.em 0.59 0.007 0.69 0.006
B hg 0.82 0.005 0.83 0.005
Tarrawarra 0-30 cm 0.80 0.017 0.83 0.005

Compared to the other test sites, the IMGERS plots are considerably smaller and relatively
homogeneous, which is reflected in the relatively small standard deviation of the VGM
parameters (Table 4. 2). This results in comparably small predicted o, values for the
IMGERS plots, which is in good agreement with measured oy(<6>) values as indicated by

the R*-values that ranged between 0.55 and 0.84 (Table 4. 3). The good match between
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observations and predictions at this test site is likely related to the lack of lateral water fluxes
and the relatively homogeneous vegetation within each treatment, which suggests that

09(<6>) is likely dominated by the variability of the soil hydraulic properties.

The soil texture at Tarrawarra covers several soil textural classes (Figure 4. 1). However, the
predicted values for the hydraulic parameters and their variability are similar to those found
for the IMGERS plots despite the considerably larger area of Tarrawarra, except for </n(K;)>
which is not included in the closed-form expression (Eq. 4. ). Therefore, the predicted oy
values at Tarrawarra are also relatively low compared to the TERENO test sites in Figure 4. 3.
Interestingly, Tarrawarra is the only test site where the closed-form expression overestimates
op. This might be an indication for processes compensating soil water content variability (e.g.
higher transpiration rates in wetter parts of the Tarrawarra site or lateral water redistribution

during wet seasons).

4.5.3 Inverse estimation of hydraulic parameter variability from observed o4(<6>) data

We tested whether it is feasible to inversely estimate the variability of hydraulic parameters
in Eq. 4. using the observed c¢(<0>) datasets described above. Estimating both the mean soil
hydraulic parameters and their standard deviations in Eq. 4. turned out not to be possible (not
shown) as no unique solutions could be obtained. In order to better constrain parameter
estimates, a wide range of <0> is needed. Since the variation of <0> was less pronounced in
the subsoil, we only analyzed soil water content data measured in the topsoil. We used a
Markov Chain Monte Carlo algorithm (Vrugt et al., 2009) to inversely estimate the standard
deviations of soil hydraulic parameters from measured 6(<0>) data. We used wide parameter

bounds to fully explore the parameter space (Table 4. 4). The generally high R*-values listed
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in Table 4. 3 indicate that the inversely estimated variability of hydraulic parameters (Table
4. 5) was able to capture the observed co(<0>) better than the forward model (Figure 4. 3).
The inverse modeling particularly captured the peak of the observed oy(<68>) at 5 cm depth
much better (Figure 4. 3) than the forward estimation, leading to an increase of R*-value from
0.23 to 0.77 at the Wiistebach test site. This is due to the higher standard deviation of n
obtained in the inversion as compared to the estimate provided by the Rosetta pedotransfer

function (i.e. o(n) increased from 0.16 to 0.21).

Table 4. 4. Lower and upper boundaries of hydraulic parameters for the inverse estimation.

log0(c(0s)) logio(o(a)) loglO(o(n)) loglO(c(In(Ky)))
Lower -2 -4 -2 2
Upper -0.7 -1.5 -0.3 0.2

Table 4. 5. Results of the best fit parameter set from the inverse gy(<6>) model application

for the TERENO, IMGERS, and Tarrawarra test sites.

o(6;) o(a) o(n) o(In(K))

Rollesbroich (5 cm) 0.08 0.002 0.13 0.60

Wiistebach (5 cm) 0.05 0.004 0.21 0.41

Scheyern (10 cm) 0.02 0.013 0.15 0.10

ug99 0.02 0.002 0.07 0.32

% ug79 0.02 0.002 0.06 0.08
8 0-6 cm

= cg 0.02 0.001 0.06 0.74

hg 0.02 0.003 0.05 0.49

Tarrawarra (0-30 cm) 0.01 0.004 0.05 0.11
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4.6 Conclusions

We presented a new closed-form expression for c¢(<0>) based on the VGM model to study
the effect of soil hydraulic properties on cyp(<6>). The sensitivity analysis showed that
hydraulic parameters and their spatial variability affect op(<6>) differently. The most
sensitive VGM parameter is the n parameter, followed by In(Ky), 05, and a, respectively. In a
next step, we used basic soil properties (i.e. sand, silt, clay content, and bulk density) to
predict og(<0>) relationships for eight datasets with different soil texture and climate
conditions using pedotransfer functions and our closed-form expression. In most cases,
predicted op(<0>) agreed well with observed cyp(<6>). This indicates that soil hydraulic
parameter variability is an important control on cp(<6>). In addition, we demonstrated that
the variability of soil hydraulic parameters can be inversely estimated from observed cy(<0>)

data.

We propose that the closed-form expression should be used in combination with pedotransfer
functions and global soil maps to estimate sub-grid variability of soil water content, which is
useful to further improve prediction accuracy of large-scale hydrologic, weather, and climate
models. In addition, information on sub-grid variability of soil water content may be useful
for the estimation of the uncertainty of large-scale remote sensing measurements of soil water

content provided by ASCAT, SMOS, and the upcoming SMAP mission.
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5 Synthesis

The wireless sensor network technology is ideally suited to provide long-term high spatial
and temporal resolution soil water content measurements at catchment scale. The observed
spatial variability of soil water content information is important in upscaling and improving
hydrology models, weather prediction, and general circulation models. In addition, it is
important for validation of large-scale remote sensing measurements of soil water content.
This thesis firstly addressed the accuracy of newly developed SPADE TDT soil water content
sensors used for the wireless sensor network application; secondly studied the relationship
between soil hydraulic properties and spatial variability of soil water content using sensor
network data and inverse modeling; furthermore, we predicted the sub-grid variability of soil

water content from basic soil information.

5.1 Final Conclusions

Chapter 2 addressed the evaluation of the newly developed SPADE sensor using the two-step
calibration procedure in the laboratory. The replication experiment showed that sensor-to-
sensor variability was significant, and much larger than the measurement noise introduced by
the instrumentation and our experimental procedures. The calibration of the 60 SPADE
sensors showed that sensor-specific calibration by considering sensor-to-sensor variability
significant improves the estimation of apparent dielectric permittivity as compared to a single
universal calibration. Whether a sensor-specific calibration is worthwhile depends on the
required accuracy of the wireless sensor network. A temperature correction function was
derived in the reference liquids and successfully transferred into two different soil samples.
The site specific complex refraction index model was used to convert the apparent dielectric

permittivity to soil water content by using 15 soil samples in Rollesbroich catchment.
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Considering the porosity and the physical realistic, the parameters of complex refraction
index model were fitted for each depth, with a RMSE 0.028 at 5 cm, 0.025 at 20 cm, and

0.022 at 50 cm, respectively.

In Chapter 3 we analyzed the temporally stable characteristics both in soil water content and
saturation degree. The range of MRD of soil water content and saturation degree show similar
tendency that they are decreasing with the increasing of soil depth, these results are in
consistent with the high standard deviation of soil water content value at deeper layer. The
lower SDRD of soil water content and saturation degree at deeper layer indicates that the
subsoil was more temporally stable than the topsoil. Our inverse estimated VGM parameters
can reproduce the observed soil water content dynamics in all soil depths, with RMSE
smaller than 0.08 cm’cm™ and the R? larger than 0.75 for the 41 SoilNet locations. Based on
this information, we have explored the potential correlations between hydraulic properties
and MRDs of soil water content and saturation degree. We found that the MRDs of soil water
content were positively correlated with the 6; and n parameters, and negatively correlated
with the a and K, parameters of the ¥GM model. Moreover, the MRDs of saturation degree
were strongly correlated with the a and n parameters that determine the shape of the VGM

model.

Chapter 4 presents a new closed-form expression of soil water variability based on van
Genuchten-Mualem model and a stochastic analysis of 1D unsaturated gravitational flow.
The sensitively analysis showed that the n parameter strongly influenced the shape of oy(<6>)
curve and specifically the magnitude of the maximum, in following are the parameter of

In(Ky), 05, and a. We can reproduce the observed gy(<0>) patterns by combining our closed-
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form expression with the pedotransfer functions of Rosetta from basic soil information for
eight datasets located in Germany, China and Australia. Furthermore, we demonstrated that
by using soil map and pedotransfer function of Rosetta to estimate VGM parameters
combining with our closed-form expression, the variability of soil hydraulic parameters can
be inversely estimated with the field observed oy(<6>) data, with R*-values ranging between

0.69 and 0.88.

5.2 Outlook

The two-step calibration procedure based on reference liquids and site specific soil samples
provides promising accuracy of soil water content measurements. However, so far
conductivity effects have not been accounted for. Thus, further research should be addressing
the electrical conductivity correction function using dielectric liquids or porous media which

are capable of covering the complete conductivity and permittivity ranges in nature soils.

So far we only analyzed the silt loam soil texture class occurring in our test site Rollesbroich
to enhance the understanding of the relationship between soil hydraulic parameters and
temporal variability of soil water content. Therefore, we suggest to extent our analysis to
other soil textural classes and climate conditions in order to further explore the limitations
and potential of this approach. Moreover, the factors that cause lateral redistribution are not
yet well quantified. In future studies, the effect of topography on the MRD of soil water
content and saturation degree should be considered in addition to the heterogeneity of soil

hydraulic properties.
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We have qualitatively studied the effect of hydraulic properties on the oy(<6>) relationships
with our novel closed-form expression. However, the factors that influence the oy(<6>)
relationship are not only affected by soil hydraulic properties but also by the interplay
between evapotranspiration, interception, infiltration and lateral redistribution amongst other
factors. In future, also meteorological forcing variability and the topographic effects on soil

water content spatial distributions of model developments should be considered.

Finally, it can be concluded that the obtained data set provided by the wireless sensor
network and the improved understanding of spatial temporal dynamics of soil water content
can be used for data assimilation in hydrological models; calibration and validation of remote
sensing retrievals of soil water content; estimating uncertainty in hydrological predictions;
designing sensor networks and optimizing the number of sensors; and upscaling and

downscaling of soil water content information.
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Appendix A

In this section the apparent dielectric permittivity is converted to soil water content for
Rollesbroich test site. The 15 undisturbed samples (length =7.7 c¢cm, diameter = 5 cm) were
taken from the two main soil types in 5, 20 and 50 cm depth. There are empirical and semi-
theoretical models to solve the relationship between the apparent dielectric permittivity and
the volume soil water content. Such as Topp model (Topp et al., 1980), which works well in
sand soil; the two-point a-mixing model (Sakaki et al., 2008), just consider the air-dry and
water-saturated conditions to set the model; and the petrophysical model of CRIM (Birchak
et al., 1974), which has physical meaning, soil type and shape factor affect the soil water
content. Here we use CRIM described in Eq. 2. 7 to convert apparent dielectric permittivity to

soil water content with the site specific calibration.

The petrophysical model of CRIM for Rollesbroich catchment is determined in the
laboratory. First step is to saturate the samples with the deionized water. Then insert the CS
640-L 3 —rod TDR100 probes in the middle of the sample to measure the permittivity of the
samples (Figure A. 1). The MatLab algorithm which based on the travelling time analysis
algorithm were used to analyze the TDR measurements (Heimovaara and Bouten, 1990) to
estimate the apparent permittivity. Next, the samples were dried in room temperature, both
the weight and the permittivities were determined in regular interval time. The volumetric
soil water content were determined gravimetrically (soil samples were oven-dried at 105 °C
for 24 hours). Because of the shrinkage of the samples caused by the gas and roots, the bad
contract between the soils and the probes caused by the small stones, three samples which

seemed to be unrepresented for the sampling location were deleted in later analyze.
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Figure A. 1. Soil samples measurement and waveform of TDR100.

Table A. 1. Parameters and the RMSE of the CRIM model for 5 cm, 20 cm, and 50 cm depth

for our Rollesbroich catchment.

Scm 20cm 50cm

Kyater 78.54 78.54 78.54
Kiotia 2.08 3.78 4.40
Kair 1.00 1.00 1.00
s 0.50 0.50 0.50
n 0.59 0.49 0.41

RMSE 0.028 0.025 0.022

The final dataset describing the relationship between apparent dielectric permittivity and soil
water content using CRIM model are shown in Figure A. 2. Since the large different of
porosity for different depths, three semi-theoretical models were fitted to the data and the
performance of these models was judged by the RMSE for each depth (Table A. 1). It was
found that three fitting methods performed equally well (Table A. 1) with a RMSE smaller
than 0.028 cm’cm™. The solid permittivity value was fitted and § was 0.5 as it is commonly
used in the soil science literature (Birchak et al., 1974). At present, there is no method of

measuring the permittivity of the solid mineral component of a granular material, the value of
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the K;0iig Temain essentially a fitting parameter and prevent the rigorous testing of dielectric

mixing models.

Because of the relatively high accuracy of Eq. 2. 7, we did not consider models with spatially
variable porosity that would in principle allow more accurate soil water content predictions
when the porosity at each sensor unit and soil depth is known for the wireless sensor network.
The large effort required to obtain this additional soil information is too large considering the

modest increase in accuracy of the soil water content measurements.

5cm measurements
1|/—5cm CRIM

+ 20cm measurements

5,04 1 |—20cm CRIM
O 50cm measurements
= 0.2
A —50cm CRIM
0 10 20 30 40 50

Ka: [_]
Figure A. 2. Relationship between apparent dielectric permittivity and soil water content in

Rollesbroich test site and the derived K,-6 model.
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Appendix B

After the deployment of the sensor network at Rollesbroich test site, we found that the sensor
output showed pronounced diurnal variations. Large differences between the two closely-
spaced measurements at a single measuring point were also observed. After investigating this
in detail, it was established that this behavior was related to the SPADE data acquisition
where the first reading result was still affected by charging capacitors within the sensor. If
multiple sensor readings were made sequentially without turning off the sensor, the stability
of the measurement considerably improved and the temperature dependence of the

measurements disappeared.

To correct these temperature-dependent oscillations effect in sensor reading, two reading
results were sequentially made at each measurement time (Figure B. 1). We flashed the
software to save two measurements each time from 5" September 2012 to 3™ March 2013.
After 3™ March 2013, we only save the correct measurement of our wireless sensor network.
However, we need to correct the measurements from April 2011 to September 2012 for all

the sensors.

We found that the difference between the two sensor readings (4v) is strongly correlated with
soil temperature, and could be fitted with a sensor-specific second order empirical
polynomial with a RMSE of 5.18 mV (Figure B. 2). It means that we can use the polynomial
function and the measured soil temperature to calculate the difference between the

temperature effected values and the true values.
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Figure B. 1. Time series data of two measured voltages and temperature after flash, the first

measurement is affected by the temperature effect of charging capacitors, the second

measurement is the right value.
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Figure B. 2. Polyfit between soil temperature and the difference between the two

measurements at the same time using the second order polynomial function.
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Figure B. 3. Correct the voltage observed before flash using the second order polynomial

function, the black lines are the corrected data, and the red lines are the uncorrected data.
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Figure B. 4. Cumulative distribution and the histogram of RMSE between the second order

polynomial fitted Av and measured Av for all the sensors.
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After the second order empirical polynomial function was derived (Figure B. 2), the
temperature affected values can be corrected by deducing the 4v which was calibrated from
the polynomial function and the soil temperature. And the uncorrected and corrected voltage,
as well as soil water content is plotted in Figure B. 3. It is clearly to see that after the
correlation for the measurements, the observed voltage before flash corresponds well to the
second measurement after flash. In average, the temperature corrected soil water content is
0.07 cm®cm™ lower than the not corrected values. After flash the software, the second
measurement of soil water content is lower than the first measurement, the difference is 0.17

cm’cm™ in the time period of after flash the software.

Using the method mentioned above, we first derived the second order empirical polynomial
functions for all sensors, with a RMSE of fitted Av and sensor output 4v less than 10 mV
(Figure B. 4). Then we corrected the first measurements of the sensors to obtain a consistent
time series of soil water content for all locations. After correction, the measurements from the
closely-spaced sensors at a single measurement location agreed well with each other with a
RMSE that varied from 0.010 to 0.035 cm® cm™ between the two sensors installed at the

same depths.
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Appendix C

In order to derive the statistical moments of pressure head (h) and soil water content (0), the
constitutive relationships between 0 and h, and hydraulic conductivity (K) and h must be
specified. Previous studies relied on the use of the Brooks-Corey or the Gardner-Russo model
for these constitutive relationships because of their mathematical tractability. Here, we
present a new derivation using the van Genuchten-Mualem (VGM) model [van Genuchten,

1980], which is known to better describe experimental soil water retention data.

For the derivation, we made use of the following expansions (4bramowitz and Stegun, 1970;

Bansal, 2006):

I+x)=14cx+- Eq.C1

(©)*=1+xin(c) + - Eq.C2

11 1

;:z—g(_x—xo).’_...; ch3
1

" +yn=x+ nxi_l Eq.C4

We assume that the variables and parameters, i.e. pressure head (h), soil water content (0),
hydraulic conductivity (K), effective saturation degree (S.), saturated soil water content (0s),
saturated hydraulic conductivity (K;), and the fitting parameters a and n of the VGM model
are realizations of a second-order stationary stochastic process and that they can be
decomposed into their mean and perturbations. By applying the expansions from Eq. C 1 to
Eq. C 4 to the VGM model and keeping the first-order terms only, a relationship that
expresses the variance of soil water content as a function of the variance in VGM model

parameters can be derived.
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We start with decomposition of different parts of the water retention function of the VGM
model. We first decomposed ah as follows,

ah = ({a) + a’)(h) + h") Eq.C5
where (...} indicates the mean value, and the prime indicates the perturbation. By writing out
Eq. C 5 and neglecting small terms (i.e. a'h') we get:

ah ~ (a)(h) + (a)h’ + a'(h) Eq.C6

Using the same approach, a decomposition of (a¢h)™ can be obtained:

(ah)™ = [(@) + a)({h) + R)
~ [@){h) + (b’ + (W™ Ka)h) + (adh’ + a’ (W)™

(@) + a' (™ )k + 2 ()"
~ (n) R A n - '
(a)(hy) <1+ @ ) (a)(h)) (1+ @ )

By applying the expansion of Eq. C 1 to the second and fourth term of Eq. C 7 and keeping

Eq.C7

first-order only, Eq. C 7 can be approximated as follows:

(ah)™ =~ ((a)(h))(n) <1 + <H>M :M) Eq.C 8

(a)(h) (a)(h)
The final term in Eq. C 8 is very close to 1. Therefore, A8 can be simplified to:

)(<a><h>)n’ (1 +n

(a)h' + a'(h)
(a)h)
By applying the expansion of Eq. C 2 to the last term of Eq. C 9, the following approximation

(ah)™ ~ ((a)Xh)™ (1 +(n) )((a)(h))"' Eq.C9

can be obtained:

(a)h' + a'(h)
(aXh)

By writing out Eq. C 10 and neglecting small terms, we finally derived an approximation for

(ah)™ ~ ((a)(h)™ (1 + (n) ) [1+n'In({a){h)] Eq.C 10

the decomposition of (ah)™:
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(ah)™ =~ ((a)}h)™ + (a)(h)™ % a + % h + n’ln((a)(h))] Eq.C 11

Following the same steps as used in Eq. C 7 to Eq. C 11, an expression for the decomposition

of (ah)™™ can be derived:

(ah)™ = () ™™ + ((a)h) =™ |- %a' - % h' — n’ln(<a>(h))} Eq. C 12

By expanding m at the mean value of ({(a)(h))™ following Eq. C 3, we obtained:

L SR 0 Lt LY Fo.C 13
1+ (@)™ A+ (aXr)™) 1+ (a)h)™)?
Substituting Eq. C 11 into Eq. C 13 resulted in:

1 ~ 1
1+ @ 1+ ((a)(h>)(">()) e C 14
(a)h)™ () , M), q-
A+ QX [@* " m" " ’"““xh”]
By applying the expansion of Eq. C 4 to (1 + (ah)")%, we got:
(1 + (ah)™)7 ~ ah + = (ah)--D = ah [1 A1 (ah)—n] Fa.C
n n

By substituting the expressions for ah (Eq. C 6), (a¢h) ™™ (Eq. C 12), and using the expansion

1_ 1 nr

PR Eq. C 15 can be rewritten as:

1
(1 + (@h)™i = [a)h) + @k’ + a'{h)] {1 + (o
nr h o L (Tl) , (Tl) h’ ’l h Eq C16
- W)((a)( ) [ T T mh n({aX ))]}
The VGM model can be written as:
1 L
0= (Gs—Br)m (1+(ah) )n+9r ch17
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After substituting the decompositions of —— (Eq. C 14) and (1 + (ah)")n (Eq. 16), and

+( "
decomposing 65 into (6,) + 0, we obtained an expression for the mean and perturbation of
soil water content as a function of the VGM parameters. After rearranging and neglecting

small terms, we obtained:

(a)(h) ><(n)((a>(h))<") + 1)
1+ (a)(h))™ (n)((a)(h))™ "
+(<9)_9)( (a)(h) >*
T+ (@) ()™ (a)(h) ™ (n)
{ (M) {a)h)™ +1 - (n) 3 [(n)({a) ()™ + 1](<a)(h))<")(1) o
(@) 1+ (a)r)™ () Eq.C 18
[(n)((@)(A)™ + 1 — (n) 3 [(n) (@) ()™ + 1] (a)(n)™ (n) b
i (h) 1+ (a)hr)™ (h)
+[(M)(a)h)™ + 1]6,

6) + 6"~ ((65) — 6,) (

+

1 [ (@)™ + 1] Gar ()™ ,
+H =gy~ @) - ln(<a><h>>]n}

From this expression, we can derive a first-order approximation of the mean of soil water

content and its perturbation:

(a)(h) () (h)™ + 1
— - Eq.C 19
) = (6,)— 6,) (1 — (h»(n))( o ) o, q
0" = by[bya’ + byh' + bsn' + b,6,'] Egq. C 20
where
by = ({(65) — O )( @) > Eq.C21
3 "\[1 + (aXh) @] (a)(h)) ™ (n)
b = () h)™ +1 — (n) 3 [(MY(a)h)™ + 1] (a)h) ™ (n) Eq.C22
e (a) 1+ (a)h)™ (a)
b = M UaX )™ +1 =) [(W)(a)h)™ + 1](a)r)™ (n) Eq.C23
2 (h) 1+ ((a)h)™ (h)
1 [(M)(a) )™ + 1] (a) ()™ Eq.C24
by = o In({a)(h)) — 1T )™ In({a)(h))
by = (M)({a)h)H™ +1 Eq.C25
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Equation Eq. C 19 expresses the mean soil water content as a function of the mean VGM
parameters and Eq. C 20 shows that the perturbation of soil water content is linearly related

to the perturbation of the VGM parameters (a', n', and 04') and the pressure head (h').

The covariance of soil water content can be derived as follows,

Covg(r) = Cov(64,05) = (B — (Ba)) (6 — (B5))) = 6 * 6
= bo|byay + byhy + bsng + bybs. | * bo[bral + byhy, + bang + bybs, |
[bf (agap) + b3 (hahp) + b3 (ngng) + bE (65,65 )]
) +biby(aghy + haag) + bybs(agng + ngag)
0 +b1b4(a,’195:8 +6,,ap) + bybs (hgnp + nghp)
+byb4(hiBsjy + 651, k) + baby(ngBs)s + 65,,mp)

Eq.C 26

= by*{b,*Cov, (1) + b,*Covy, (1) + b3*Cov, (1) + b42Cov95(r)
+b1b,[Covay (1) + Covgn(—1)] + b1b3[Covey (1) + Covyy (—1)]
+b1by[Covyg, (1) + Covgp, (—1)] + bybs[Covyy (1) + Covpy (—1)]
+b;by[Covpg, (1) + Covyg (—T)| + bsbs[Covyg, (1) + Covyg, (—1)]}

where r is a vector (r = a-f, and -r = -a), o and P are positions within the soil profile, and by
to by are as defined above (Eq. C 21 to Eq. C 25). This equation shows that the covariance of
soil water content is only related to the covariances of the VGM parameters and pressure
head. We explain the positive (r) and negative (-r) covariances shown in Eq. C 26 with the

example covariance between o, and /g:
Covan(r) = Cov(ag hg) = ((aq — (ag)) (hg = (hg))) = ag * hp Eq.C27

Covan(—1) = Cov(ap, he) = (@5 — (ap))(he — (ha))) = af * Eq.C28

The other covariances in Eq. C 26 can be expressed in a similar manner.

In a next step, we derive the covariance between the VGM model parameters and the pressure

head, which involves a first-order approximation of the hydraulic conductivity function of the
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VGM model. For mathematical convenience, we used a natural logarithm transformation of
hydraulic conductivity, i.e. Y=In(K), f=/n(Ks). The hydraulic conductivity of VGM model

can be written as:

m

1
1 m
)m+2ln 1-— 1_< —) Eq.C29

1
V=7t 1+ (@)ym™

1+ (ah)™

1
wherem =1 — =
n

Writing out the last term of Eq. C 29 and replacing m with 1 — % resulted in:

1m

1- 1—(;)m =1-(ah)"

1
1+ (ah)m)™ [1+ (ah) ]n Eq. C 30

h?ﬁﬁﬁLm

1
By applying the expansion of Eq. C 4 to [1 + (ah)™]=, we obtained:

1 m
1-|1 ( ! )m 1 (h)"[ ] [ Eq. C 31
A+ @) | =T Y T eyl an n(ah)” 0
By rewriting the right side of Eq. C 31, we obtained:
1 m
1 m 1 1
1-|1- =~ 1—-— Eq. C 32
((1 T (ah)")m) 1+ (ah)”( ) a
By substituting Eq. C 32 into Eq. C 29, we obtained:
re bt e[ (1) Fq.C 3
~f 2 iy Rl g (ah)™ i kg (ah)™ " n 4

Inserting Eq. C 3 and Eq. C 14 into Eq. C 33, and decomposing f into <f>+f' resulted in:

(V) +¥' = (f)+ 20 (1 - %) * (g - 2<1n)) (i (<a1)<h>)<">>

G- 2<n>>(<a><h>)<n><n> . Fq. €34
1+ (a)h)™  (a)

+f -

102



Appendix

(G - S (@™
1+ (@)™ (h)

(j - m) ({a)(h))
| T Gy

In[1 + (@)(h)™] 2
2(n)? Ty —m|"

After rearranging, the following first-order approximations for the hydraulic conductivity and

its perturbation are obtained:

(¥) = (f>+2zn( ) (5— ! )m( ! ) Eq. C 35
(n) 2 2(n) 1+ ((aXh)™

Y'=f"—a;a’ —ah’ — azn’ Eq. C 36

where

5 1 .
_ G- Tn))((a)(h))( )@ Eq. C 37
CETIR (@™ (@
5 1 .
27 1+ (a) ™ (h)
5 1 .
(7 2(n)) {a)h)™ In[1 + (a)(h)™] 2 Eq. C 39

az = In({aXh)) +

1+ (a)h)™ 2(n)? ~(n)2 —(n)

For reasons of mathematical tractability, we only consider gravity-dominated flow.
Therefore, we substituted the pressure head h(x) = (h) + h’ and log-transformed hydraulic

conductivity Y (x) = (Y (x)) + Y’ into the steady-state simplification of the Richards equation

(:—x [K (h) (g—: + 1)] = 0). The perturbation of pressure head can be expressed as:

92 32h(x)  9(h(x))d(Y (Y (x)) Oh(x)'
Y+ ;x( )>+((Y)+Y’) 6}{(:) (a(x)) ( (x)) ( (x)) a(;f)
A(h(x))aY (x)'  Oh(x) aY (x)’ a(Y(x)) aY(x) o Eq. €40
+ dx ox + ox 0x 0x ox
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The covariance between pressure head and hydraulic conductivity was already derived by
Zhang et al. [1998], so here we just briefly reiterate the fundamental steps of this derivation.
Since (h(x)) and (Y (x)) are constant and by neglecting higher-order terms, the following

expression can be obtained from Eq. C 40:

0’h(x) () _

Eq.C 41
dx? * dx d
By substituting Eq. C 36 into Eq. C 41, we obtained the following equation:
9%h(x)’ oh(x)' of' oa’ on'
— = - —_— Eq. C 42
dx? %25 ax T “ox tas dox a

By multiplying Eq. C 42 with the head fluctuations at a different location and taking the

ensemble mean, we obtained the following expression for the covariance of pressure head:

Eq. C 43

0%Covy, (1) 9Covy (1) 6Covfh(r)+ aCovah(r)_l_ 0Covy,(T)
or? 2 T or RO o

Using the same method, we derived the following three equations for the covariance between

the hydraulic parameters of the VGM model:

9Covpn(r) o 9Covsp (1) _ 0Couy(r) _a 9Covsa (1) —as 0Covsm(r) Eq. C 44
912 or ar or ar

0Covqy (1) _a, dCovy, (1) _ 0Covpy(—T1) —a dCov, (1) _a, 0CoVp (T) Eq. C 45
or2 or or oar or

dCov,, (1) _a, 0CoV,(T) _ 0Covp,(—T) _a 0CoV,y,(—T) a dCov, (1) Eq. C 46
or2 or or or or

We assume that the hydraulic parameters can be described as a second-order stationary

random variable using an exponential function:

T
Covy (1) = aﬁexp(—lp—| Eq. C 47
v

where V signifies one of the hydraulic parameters (i.e. s, o, n, and Y=In(Ky)), o is the

variance, and py is the correlation length. We only considered a vertical domain, and to keep
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things simple, we assumed that the VGM parameters are uncorrelated. This strongly
simplifies Eqs. A44 to A46. By using the fact that Covsp, () = 0 when r is close to o or -oo,
and integrating Eq. C 43 to Eq. C 46 using Eq. C 47, the following expressions were derived

by Zhang et al. [1998]:

c _ TP L ontryexpleaylrl) — [2HG) — 1+ aypJexp(—H] Eq. Ca8
ovpp(T) = 1= ay2p,2 r) exp(—a,|r r aprlexp( ,Df) q.
a,02p Eq. C 49
Coven(1) = 1222 ah (r) exp(-a,r)
a
|7|
—[2H(r) = 1+ azpelexp(——)
Pa
ascip Eq.C 50
Covy (1) = #’;Z;Z{ZH&) exp(—az|rl)
n
|7
—[2H(r) = 1+ azp,]exp(——)
Pn
afp az|r| |7
rrr 2
C =277 - - -2
o)== e (5 oo ()
n 103 pq ex _a2|r| ) ex _ﬂ
T—a2p2 |TP\ " T, )PP\ T, Egq.C 51

@i [ alrl) (]
1—a22pn2 P a P &P Pn

0, r<o0

, and a; to a; are as defined above
1, =0 e

where H(r) is the Heaviside function: H(r) = {

(Eq. C 48 to Eq. C 50). By substituting the covariance of pressure head and the hydraulic
parameters expressed in Eq. C 48 to Eq. C 50 into Eq. C 26 and setting r = 0, an expression

can be derived for the variance of soil water content (63):

o7 = b2 {blzag b7 o ps 4104 Pq azo; Py ]
(1 + azpf)az (1 + a2pa)a2 (1 + aan)aZ
2 2 2 2 a’lo—épa
+ b3"on + by"04, + 2b1b, T+, Eq. C 52
2Fa

a2
+ 2b,bs (— Tonbn, Zp; )}
2Fn
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where by to bs are as defined above (Eq. C 21 to Eq. C 25), and a, to a3 are as defined above
(Eq. C 37 to Eq. C 39). This closed-form expression for o7 ((h)) shows that the variance of
soil water content is a function of the mean (i.e. <0s>, <In(K)>, <a>, and <n>), the standard
deviation (i.e. 6(8s), o(In(Ky)), o(a), and o(n)), and the vertical correlation length (i.e. pis),

po, and p,) of the VGM model parameters.

In order to assess the importance of the pressure head fluctuations that result from flow in the
heterogeneous soil profiles, we also calculated oy for h'=0 (i.e. assuming that the system has
the same pressure head everywhere). We start this derivation from Eq. C 16 by setting h'=0.
This results in:
0’ = bo[bia’ + bsn' + b,6;'] Eq.C53
where by to bs are as defined above (Eq. C 21 to Eq. C 25). Following the same method as
used to derive Eq. C 26, the covariance between 6, and 6g can now be expressed as:
Covg(r) = by*{b;*Covy (1) + bs*Covy, (1)

+ b4zCovgs(r)+b1b3[Covan(r) + Covgpn(—1)]
+b1by[Covyg, (1) + Covgp (—1)] Fq. €54
+b3by[Covng, (1) + Covom(—r)]}

By assuming that the VGM parameters are uncorrelated and setting =0, agze can be expressed

as follows when h'=0:

0¢ = by*{b,’0 + bs’0? + b420925} Eq. C 55
where by to by are as defined above (Eq. C 21 to Eq. C 25). This equation shows that the

variance of soil water content is only related to the variance of VGM parameters (o, n, and 0;)

if we ignore the effect of perturbation of pressure head (h'=0).
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