001     202765
005     20240711085547.0
024 7 _ |a 10.1016/j.ijhydene.2015.01.155
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000361404500029
|2 WOS
037 _ _ |a FZJ-2015-04947
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Röhrens, Daniel
|0 P:(DE-Juel1)141800
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Advances beyond traditional SOFC cell designs
260 _ _ |a New York, NY [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1440585229_27022
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Research and development of Solid Oxide Fuel Cell (SOFC) technology has been carried out at the Jülich research center for more than 20 years. A standard cell design based on a porous nickel cermet has been established and tested with stationary conditions, for which a power density of more than 1.50 W/cm2 at 800 °C in H2 was obtained. In order to broaden the field of possible applications, new cell designs have been developed. Among those are metal-supported SOFCs (MSC), which promise increased robustness against thermal-, mechanical and chemical stresses, as well as cheaper production costs. While the MSC development may find an application in mobile devices another cell design concept aims at much lower operating temperatures. For this cell type a very thin zirconia membrane is deposited on top of a standard anode support via a multi-step sol/gel-route. With this setup a reduction of the operating temperature to 600 °C with a power output of 1.25 W/cm2 could be demonstrated.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Han, Feng
|0 P:(DE-Juel1)129610
|b 1
|u fzj
700 1 _ |a Haydn, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schafbauer, Wolfgang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 4
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 5
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 6
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2015.01.155
|g p. S0360319915002475
|0 PERI:(DE-600)1484487-4
|n 35
|p 11538-11542
|t International journal of hydrogen energy
|v 40
|y 2015
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202765/files/1-s2.0-S0360319915002475-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202765
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)141800
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129610
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21