001     202769
005     20210315092238.0
020 _ _ |a 978-3-95806-062-3
024 7 _ |2 Handle
|a 2128/9036
024 7 _ |2 ISSN
|a 1866-1807
037 _ _ |a FZJ-2015-04951
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)131030
|a Weng, Robert
|b 0
|e Corresponding author
|g male
|u fzj
245 _ _ |a Study on the electroforming and resistive switching behaviour of nickel oxide thin films for non-volatile memory applications
|f 2015-05-31
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2015
300 _ _ |a XXI, 159 S.
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1439284949_2028
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |2 DRIVER
|a doctoralThesis
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |2 ORCID
|a DISSERTATION
490 0 _ |a Schriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies
|v 109
502 _ _ |a RWTH Aachen, Diss., 2015
|b Dr.
|c RWTH Aachen
|d 2015
520 _ _ |a Over the past decade, the resistance switching effect has drawn attention within the scientific community as a potential candidate for non-volatile random access memories (RAM) and crossbar logic concepts. The resistance switching memory cells are based on (at least) two well-defined non-volatile resistance states, e.g., high resistance state (HRS) and low resistance state (LRS), that define two (or more) logic memory states, e.g., 1 or 0. Often these cells have a simple capacitor structure and are therefore easy to fabricate. However, the market launch of RRAMs is hindered by several serious obstacles. For example, the underlying microscopical physical and chemical switching mechanism of RRAM devices is still under debate although various models have been proposed to explain the observed phenomena. By missing a deep understanding of the resistive switching effect on an atomistic scale, a reliable fabrication of predictable and well performing Gbit memory seems to be questionable. This thesis is an attempt to develop and physically understand the nickel oxide (NiO) based resistive switching non-volatile memory devices. Although the underlying microscopical switching mechanism is still under debate, the macroscopic switching mechanism of this material system is often described by the creation and rupture of well-conducting nickel flaments embedded within an insulating NiO matrix, the so called fuse-antifuse mechanism. The resistive switching characteristics, essentials for future non-volatile memories, such as low voltage and current operation with high resistance ratio between HRS and LRS, fast switching speed, high retention and endurance are presented. Additionally, the emphasis is layed on the understanding of the so called forming process. It describes the first resistance transition of the resistive switching device in which the proposed nickel flament is formed. Therefore, it is the key process for understanding the resistive switching phenomena. The statistical distribution of the observed forming process is studied under accelerated constant voltage stress conditions and at varying temperatures within the framework of the Weibull statistics. To understand the physical and chemical nature of the flamentary structure, the influence of different ambient atmospheres and temperatures on the forming process is analyzed electrically as well as chemically by XPS analysis. Combining these results with the results of the potentiostatic breakdown studies, a model for the forming process in Pt/NiO/Pt non-volatile resistive switching memory devices is proposed.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
650 _ 7 |x Diss.
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202769/files/Schluesseltech_109.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202769
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131030
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a FullTexts
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21