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Abstract

This thesis deals with first-principles calculations for pyrite and marcasite compounds,
with a particular focus on their suitability for photovoltaic applications. Their electronic
structure and their optical properties are thoroughly investigated within density-functional
theory (DFT) using various exchange-correlation functionals, among them sophisticated
hybrid functionals. To account for electronic excitations the many-body perturbation
theory in the GW approximation has also been exploited.
The investigation of the electronic and optical properties of iron pyrite (FeS2) covers

an essential part of this thesis, since iron pyrite is reported to be a promising material for
photovoltaic applications due to its large optical absorption, a suitable band gap and large
photocurrents. Furthermore, iron pyrite consists of abundant elements, and thus would
allow for a large-scale and long-term utilization. However, iron pyrite solar cells exhibit
only an open-circuit voltage of merely 200 mV, leading to a small conversion efficiency of
3%, which disqualifies iron pyrite for photovoltaic applications at present.

This thesis exposes that the question about the size of the fundamental and optical
band gap of iron pyrite, both, theoretically and experimentally, might not be settled yet.
Low-intensity contributions in the optical absorption might complicate the determination
of the optical band gap, and the GW results show that the fundamental band gap might
be much smaller than expected. Therefore, the small fundamental band gap of pristine
iron pyrite in the bulk phase might be already responsible for the low open-circuit voltage.
Since interfaces and surfaces play an important role for the photovoltaic performance,

the electronic structure of the most stable iron pyrite surfaces is also discussed, revealing
that surface states of Fe 3d character might act as charge recombination centers. First
attempts to passivate these surface states indicate that heavier adatoms are more suitable
than light adatoms.

The application of the GW approximation on iron pyrite yields an unconventional reduc-
tion of the band gap compared to the “plain” DFT results, whereas largely overestimated
band gaps are obtained using hybrid functionals. By extending the calculations to other
pyrite compounds (RuS2, OsS2, NiP2 and ZnS2) and to the structurally closely related
marcasite compounds (FeS2, FeSe2 and FeTe2), it is shown that the interplay of transitions
between p and d states and the screening caused by the d states is responsible for this
peculiar behavior.
Finally, a particular focus is set on FeS2 marcasite, which is reported to coexist with

the pyrite phase, but is presumed to degrade the photovoltaic performance. However, the
results in this thesis indicate that iron marcasite might be better suited for photovoltaic
applications than iron pyrite.
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Conventions and Abbreviations

In this thesis the following conventions in mathematical expressions are used:

Symbol Attribute Quantity
r bold vector
r̂ bold and hat normalized vector
H bold and underline matrix

The following abbreviations are used frequently in this thesis:

Abbr. Meaning
a.u. atomic unit
CBM conduction band minimum
c-RPA constrained random phase approximation
DFT density-functional theory

FLAPW full potential linearized augmented plane-wave
GGA generalized gradient approximation
HELO higher-energy local orbital
HF Hartree-Fock
HSE Heyd-Scuseria-Ernzerhof
IR interstitial region
LDA local density approximation
LO local orbital
MT muffin tin
PBE Perdew-Burke-Ernzerhof

QSGW quasiparticle selfconsistent GW
VBM valence band maximum
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1. Introduction

The world demands for an expanding or at least stable energy supply. Fossil energies are
not going to be a solution, since they are running out within the next centuries. The
“oil-peak” is probably almost passed or will take place within the next decades [1]. The
situation will become even more severe, when Asia technologically closes up to Europe and
North America. And even if another large fossil fuel depot will be discovered, which is able
to delay a resource shortage, there is still the problem with global warming. By burning
fossil fuels the concentration of greenhouse gases in the earth’s atmosphere increases.1

Hence, if we want to sustain or even improve the standard of living for the future, we have
to fundamentally restructure our energy production.
In the year 2013 57% of the energy production in Germany was based on fossil fuels

like coal, oil or petroleum gas, whereas 15% of the power originated from nuclear power
plants and only 24% from renewable energies such as wind, water, solar and biomass [2].
Although nuclear energy contributes relatively little to the CO2 augmentation, the accidents
in Tschernobyl and Fukushima demonstrate the high risk to rely on that branch. Renewable
energies or so-called “green energies” are the cleanest energy source, and practically they
are infinitely available, and thus are the only option on a long-term scale so far.
Although we are aware of the energy problem, the fraction of renewable energies in

Germany is only about 25%, which is already quite high as compared to many other
countries. This fraction might be much larger, if the energy production costs using
renewable energy sources were comparable or even lower than those exploiting fossil
energies. In particular the photovoltaics with about 0.08-0.14 e/kWh are still to expensive
to compete against 0.04 e/kWh using brown coal [3], which explains that photovoltaics
makes for only a small fraction of merely 5% to the energy production in Germany. Though,
the solar energy is one of the most promising energy sources. The nature itself has made
use of solar energy in every ordinary plant via the photosynthesis, and all life on the planet
depends on that energy. The earth is radiated with 1.74 · 1017 W solar power [4]. To get a
feeling for this number, let me mention, if we were able to convert all of this to electrical
energy, we would be able to generate the annual world energy demand of the year 2013 of
1.5 · 1014 kWh [5] in less than one hour.
There are two major reasons that the production costs for photovoltaics are high,

although solar energy is vastly existent. First, the amount of extractable solar energy of
an area fluctuates with weather conditions and the day-night cycle, which demands for a
well-developed energy network and suitable energy storage, which is a challenging task.

1Here, I would like to quote James Hansen, a researcher in the field of climatology: “What has become
clear from the science is that we cannot burn all of the fossil fuels without creating a very different
planet.”
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1. Introduction

Second, the production costs of solar panels play a crucial role, and in the following I will
focus on that. In the coming paragraph, the currently most prominent commercial solar
cell materials with their advantages and disadvantages are briefly introduced.
The market for solar cells has been always dominated by Si with most cells consisting

of mono-crystalline or poly-crystalline Si (c-Si), since technological know-how about
processing Si has been already assimilated in the silicon-based computer chip production.
The absorption layers of this cells have to be quite thick with hundreds of µm and
exhibit a (solar-grade) purity of 99.999%, which is less than electronic-grade purity of
99.9999999%, but still quite cost-intensive in production. After growing high-purity Si
using the Czochralski-process [6], there is a quite cost-intense step of cutting the crystal
into thin wafers, since it leads to a substantial waste of pure Si material. Production
processes via chemical vapor deposition (CVD) or physical vapor deposition (PVD), as
they are used for thin-film solar cells, are much simpler and cost-efficient. In addition, a
significantly thinner absorber layer is needed for thin-film solar cell materials like amorphous
Si (a-Si). Thus, in the recent years the application range of thin-film photovoltaics, with
a focus on a-Si or micro-crystalline Si (µc-Si), has been extended from only small-scale
applications like hand calculators to large-scale devices. However, problems with up to
30% degradation of the conversion efficiency within some months to typical values of
about 5-7% efficiency as well as a shorter lifetime than the c-Si solar cells, make them
mostly only attractive for applications demanding for a mechanically flexible device. For
comparison, note that the energy conversion efficiency of single-stack c-Si solar cells in
research can reach up to 25%, which is already quite close to the maximal theoretical value
of about 32% for single-stack cells predicted by the Shockley-Queisser limit [7].2 Thin-film
solar cells made of CdTe or CIGS (Copper-Indium-Gallium-Diselenide) suffer less from
degradation than a-Si and exhibit promising efficiencies of above 10%, exceeding even
20% for solar cells in research. However, a major drawback of the CdTe and CIGS cells is
the scarcity of Te, In and Ga [8, 9]. These materials can be mined only as a by-product
making it difficult to mine large amounts. For Te all known deposits are insufficient to
guarantee photovoltaics on large-scale. Furthermore, Cd is poisonous and carcinogenic,
which might pose some serious complications regarding the recycling of CdTe cells. In
the case of Ga and In the supply is regarded to be critical, in particular for In, since the
growing market of liquid crystal displays tightens the resource shortage. Hence, CdTe and
CIGS solar cells are most probably not a long-term solution for the energy problem. Finally,
there are also commercially produced multi-junction GaAs solar cells with astonishing 30%
efficiency,3 but they are so expensive, that the application is limited to space missions,
where weight and size of the devices is more important than the costs.

Overall, to guarantee a long-term and large-scale supply of solar energy on an environ-
mentally sustainable basis, the materials are restricted to abundant, non-toxic materials.
Si already fulfills these conditions, but there are other materials, which might be better
suited for photovoltaic applications. For instance, the optical absorption of Si with 103-

2Commercial c-Si solar cells show a maximum efficiency of about 20%.
3The world-record solar cell is based on GaAs using a multi-junction and concentrator buildup, exhibiting
an efficiency of more than 40%.
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104 cm−1 [10] is only mediocre compared to other semiconductors. This is caused by
the nature of the indirect band gap in Si, and thus it demands for quite thick absorption
layers to obtain a reasonably large quantum efficiency. Hence, the search for alternative
materials might be very promising. Copper sulfides, copper oxides, pyrites, chalcopyrites
and kesterites are regarded to be good candidates [11, 12]. This thesis is concerned with
the pyrite compounds and the structurally related marcasite compounds, in particular the
most prominent compound FeS2 lies in its focus.

FeS2 pyrite is a mineral, which is quite common in the earth’s crust. The compound is
so abundant that it has been used in flintlock guns to ignite the gunpowder in the 16th and
17th century. It is also referred to as fool’s gold due to its shiny luster of its surfaces, similar
in appearance to gold. However, iron pyrite is much harder than gold, which makes it easy
to distinguish them. Due to a large optical absorption coefficient of about 6× 105 cm−1

for photon energies E > 1.3 eV, large photocurrent densities of 40 mA/cm2 and a band
gap of 0.95 eV measured via optical absorption and photoconductivity measurements [13],
FeS2 is believed to be a promising photovoltaic material for the last 20-30 years. This
large optical absorption leads to a high quantum efficiency of about 90% by using only
10 nm thick absorption layers, whereas for comparison µm-thick layers have to be used
for thin-film a-Si solar cells. Doping the material with As, Ni or Co leads to n- as well as
p-type conductivity in FeS2 [14], which might be of importance to assemble a p-n junction
purely consisting of iron pyrite. However, all attempts using iron pyrite as absorber material
in a solar cell led to a disappointing maximal conversion efficiency of around 3% [13] or
even much lower, as it has been observed recently in pyrite nanocrystal solar cells [15].
These low efficiencies are caused by a low photovoltage with an open-circuit voltage being
maximal 200 mV, corresponding only to about 20% of the measured band gap size.
Many publications focus on the possible reasons for that low open-circuit voltage in

pyrite, since all other relevant properties for photovoltaic applications are really promising.
However, there is no agreement on one or a few possible sources yet. The suggested
reasons cover intrinsic and extrinsic point-defects [16, 17], intrinsic surface states [18–21],
conductive conversion layers [22], metallic FeS-precipitates [23], bulk phase impurities [24]
and a small fundamental band gap of pyrite bulk itself [25, 26]. In the following I will
briefly discuss each of these possible sources and draw connections between them, showing
that in some cases the conclusions are contradictory, and thus the results on iron pyrite
are still not well understood.
The very first attempts to explain the low photovoltage are based on defects in the

material. Electrical resistivity measurements yield large free charge carrier densities of 1014-
1018 cm−3 in undoped pyrite [14, 27], whereas for clean pyrite free charge carrier densities
of 1010 cm−3 are expected at room temperature, comparable to those in solar-grade Si.
The much larger densities are attributed to defects. Since exclusively sulfur-deficient pyrite
crystals have been observed in studies [28], Birkholz et al. report of a model in which
sulfur vacancies in bulk pyrite lead to defect states in the band gap acting as charge
recombination centers, and thus reducing the open-circuit voltage [16]. These defect states
are formed due to the breaking of the octahedral symmetry. The same symmetry-breaking
appears also on the S-terminated (100)-surface, which might lead to intrinsic surface states
located in the band gap giving rise to a Fermi level pinning [18]. Sun et al. claim both
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1. Introduction

causes to be unlikely to explain the low open-circuit voltage, since their calculations show
no intragap surface states of the (100)-surface [29] and the formation energy of sulfur
vacancies in pyrite bulk is large with about 2.4-2.7 eV [17]. Since the sulfur vacancies are
the dominant intrinsic defects, bulk pyrite should be essentially intrinsically stoichiometric.
Instead, Sun et al. propose oxygen impurities acting as substitutional defects for sulfur as
a possible cause of the low open-circuit voltage, which might be in addition responsible for
the unintentional p-type conductivity of pyrite samples [17]. However, Hu et al. come to a
different conclusion, showing that oxygen-doped pyrite might improve the carrier mobilities
and lifetimes, and thus lead also to an improvement of the device performance [30, 31].
The same group also suggests to synthesize pyrite thin films under sulfur-poor conditions,
because the sulfur-rich (100)-surfaces possess a considerably smaller band gap than the
sulfur-poor surfaces [19]. The S-terminated (100)-surface, which has been examined in
many other studies, and has been made responsible for the low performance in some
cases, is categorized into the S-poor surfaces in this study and exhibits a spin-polarization.
Another recent study on the (100)-surface of pyrite using scanning tunneling microscopy
measurements and simulations reports a band gap decrease to 0.4± 0.1 eV due to intrinsic
surface states, which are overlapping with the bulk bands of the band edges [20, 21]. A
similar argument has been reported by Limpinsel et al., who make a p-type inversion layer
on top of an n-type pyrite surface responsible for the low performance [22].
Furthermore, the accumulation of metallic sulfur-poor FeSx precipitates at the sur-

face [23], as well as the formation of bulk phase impurities like the Marcasite phase [24]
have been also offered as a cause of the low open-circuit voltage. In the synthesis of pyrite
the structurally closely related marcasite structure might be produced, which has been
reported to have a much smaller band gap with 0.34 eV than pyrite [32]. Such a small band
gap might have a crucial influence on the performance of a solar cell for already very small
traces of that phase impurity. The band gap of FeS2 marcasite has been obtained using
electrical resistivity measurements, and since then there had been no reports about further
experimental investigations on this band gap to my knowledge. Hence, the marcasite
phase of FeS2 has been considered to be critical for photovoltaic applications. However,
recent studies indicate an at least as large band gap of the marcasite phase and a similar
strong optical absorption as compared to pyrite [29, 33].

While most studies focus on the presence of defects, phase impurities or surface-related
phenomena to investigate the low photovoltage in iron pyrite, there are also electronic
structure calculations showing that already in the ideal bulk structure the question of the
size of the fundamental band gap is still not settled. Although the band gap size of 0.95 eV
is widely accepted, there is a quite large spread of reported experimentally measured
band gap sizes and transition types for iron pyrite, comprised in the work of Ferrer et
al. [34]. The authors indicate that this large spread is caused mainly due to the purity of
the samples and the differences in the experimental techniques and the post-treatment
of the measured data. Eyert et al. have demonstrated in calculations a rather sensitive
dependence of the band gap of pyrite on the Wyckoff parameter, which is a structural
parameter controlling the distance of the sulfur atoms in the sulfur dimers [35]. They
claim that the large optical absorption in FeS2 pyrite is a consequence of the transitions
between the Fe 3d states at the valence band edge and the S 3p state at the conduction
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band edge around the Γ point. However, recent results of the pseudodielectric function by
Choi et al. indicate that the optical transitions from the valence band maximum to this
S 3p-state are strongly suppressed [36]. Therefore, optical measurements might not be
able to detect this low-intensity conduction band minimum in iron pyrite, and thus the
fundamental band gap might be significantly smaller than the measured 0.95 eV. This
is supported by a theoretical study of Lazić et al. [26] and one of my publications [25].
Most of the experimental data could be also correctly interpreted by considering a small
fundamental band gap in iron pyrite, which is difficult to detect due to its low optical
activity and the small contribution to the density of states of this S 3p band. For instance,
the low temperature activation energy of 0.2 eV obtained within electrical resistivity
measurements [37, 38] might be caused by defects as it is proposed in these references,
but a low-intensity bulk band might explain it as well.
Now it should be apparent that there are many works trying to explain the low open-

circuit voltage in iron pyrite with both experimental as well as theoretical approaches,
which come to a variety of conclusions. Since the results in this thesis are obtained within
theoretical approaches only, let me throw in a short interlude, broaching in the issue of the
importance of simulations and theory. Although a large part of this work was stimulated
by experiment, simulations and theory are as well essential to understand the underlying
mechanisms of physical phenomena. Experiment and simulation approach the problem
from different sides. In experiment relevant quantities are measured, but to constrain the
measurement to the essential effects might be difficult. For instance, finite temperature or
unknown impurities in the material might have a considerable influence on the results. In
simulations we know exactly the system and the underlying conditions, though we have to
capture the essential physics with our model in the right way. If this is the case, simulations
are not only able to help in understanding, but they might even have predictive power.
Furthermore, with increasing computational resources we are able to treat larger system
sizes and more complex systems with more sophisticated approaches and thereby we are
able to model more realistic systems, while experimentalists strive to obtain pure samples
and work at lower temperatures. Hence, there is a slow but steady diminution of the gap
between experiment and simulation.

After this short interlude, let me focus on the pyrite results obtained within simulations
now. Most of the theoretical results in the aforementioned publications are based on
density-functional theory (DFT) [39, 40] in the local density approximation (LDA) [41, 42]
or the generalized gradient approximation (GGA) proposed by Perdew-Burke-Ernzerhof
(PBE) [43]. Density-functional theory has earned and still earns a lot of merits in various
applications, where the electronic structure is needed, which also expresses in an increasing
number of publications with this topic [44]. The reported band gap of iron pyrite within
DFT using the LDA or GGA functional varies from metallic (i.e. 0 eV) to about 1 eV [29,
45–50] depending strongly on the value of the Wyckoff parameter [35]. The most recent
results state a band gap of 0.6 eV for the structural parameters taken from experiment [51]
and 0.4 eV using optimized structural parameters [19, 25, 29]. These values are consistent
with the conventional band gap underestimation of DFT calculations within local exchange-
correlation functionals [52, 53], exhibiting an about 50% smaller band gap than the widely
accepted experimentally measured value of 0.95 eV. Since the band gap has a crucial
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1. Introduction

influence on the electronic and optical properties of semiconductors, an improvement of
the band gap description is necessary to guarantee a reliable analysis for photovoltaic
applications. One possibility to correct for that underestimation is the DFT+U method
with a local Hubbard-U correction, which considers for correlation effects, and thereby
enhances the band gap size. By applying this method to FeS2 pyrite, the band gap is
reported to increase to about 1 eV for a Hubbard-U of about 2 eV [29, 30]. However,
aside the rigidity of this approach and the discussion whether the DFT+U method is not
fully ab-initio any more due to the introduction of U , there is a recent study by Choi et
al., in which a considerable worsening of the optical absorption compared to experiment is
found for the DFT+U results of pyrite compared to the “plain” DFT results [36].
Hence, more sophisticated methods like hybrid functional approaches or the GW

approximation within many-body perturbation theory [54] might be needed to describe
the electronic and optical properties of iron pyrite. The GW approximation has been a
great success in the prediction of band gaps of various semiconductors [55], and also the
hybrid functional HSE06 is reported to improve the prediction of band gaps [56, 57]. To
my knowledge there is not much literature containing systematic investigations for pyrite
or marcasite compounds using these methods. The application of the HSE06 functional
is touched in [29, 30], reporting of a much too large band gap of iron pyrite and iron
marcasite compared to experiment, and in [36], there is one sentence reporting about
a quite unconventional reduction of the band gap of iron pyrite to about 0.4 eV when
applying single-shot GW on top of GGA-PBE results. Both, the drastic overestimation of
the band gap within HSE06, as well as the reduction of the band gap size using GW is
very surprising and remarkable. It also seems that the single-shot GW results of iron pyrite
exhibit a strong starting-point dependence as reported for several other systems [58–60],
since the starting-point independent quasiparticle selfconsistent GW (QSGW ) method [61,
62] yields a quite different result with a band gap of 0.81 eV compared to the single-shot
GW approach [63]. It would be highly interesting to understand the reason, why single-
shot GW and QSGW predict these different results. For instance, it is not clear how
far the reported overestimation of band gap sizes within selfconsistent GW methods [64]
affects the results for iron pyrite. There is no comparison between those approaches in
reference [63], and additionally, an examination of the optical absorption is absent, making
it difficult to compare the results to experiment.

Thus, iron pyrite behaves quite exotic when applying these more sophisticated approaches,
and although there are plenty of publications about iron pyrite, it seems not even to be
clear which method is most suitable to describe this compound. Much less is even known
about the electronic structure of other pyrite compounds, as well as the structurally related
marcasite compounds, within these more sophisticated methods.
In this thesis I am going to deal with two major topics: first I would like to shed some

light on the electronic structure and the optical properties of several pyrite and marcasite
compounds in the bulk structure (FeS2, RuS2, OsS2, NiP2 and ZnS2 pyrite and FeS2, FeSe2

and FeTe2 marcasite), and thus interpret the photovoltaic performance of these materials.4

4Note that some of the results regarding the electronic structure and optical properties of iron pyrite
and iron marcasite are already published in one of my references [25].
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Secondly, since interfaces play a crucial role for the photovoltaic performance of solar
cells, I examine the thermodynamic stability and the role of surface states in iron pyrite by
using free-standing iron pyrite films of (001), (111) and (210) orientation as a simplified
model. Furthermore, first attempts to passivate surface states by placing adatoms on top
of the surface are also discussed. For the calculations a full-potential linearized augmented
plane-wave (FLAPW) method [65] as implemented in the Jülich DFT code Fleur [66]
has been exploited, which also features a hybrid functional framework [67, 68]. For the
GW calculations the Jülich Spex code [69] has been used, which also allows for QSGW
calculations in the most recent version. Both codes are highly efficient and very accurate.
This thesis is structured as follows: in chapter 2 the density-functional theory (DFT)

is established and the most basic approximations for the exchange-correlation functional,
i.e. the local density approximation and the generalized gradient approximation are depicted.
The more sophisticated exchange-correlation functionals like hybrid functionals or the
DFT+U model are explained in chapter 3. The GW approximation is briefly introduced
in chapter 4, including a discussion of its most important characteristic quantities and the
difference between the single-shot approaches and the quasiparticle selfconsistent GW
method. Chapter 5 is about the basics of the full potential linearized augmented plane-
wave method as implemented in the DFT code Fleur [66]. In particular the numerical
parameters, which are important for the convergence of the results, are addressed. The
fundamental mechanism of solar cells and the basic quantities to evaluate their performance
are covered in chapter 6.

The DFT results of the electronic structure and the optical properties of iron pyrite are
presented in chapter 7. In particular the dependence on the exchange-correlation functional
and on the structural parameters is investigated. In chapter 8 the calculations for iron
pyrite are extended to the GW approximation, and finally a possible cause for the low
open-circuit voltage in iron pyrite solar cells is discussed.

The DFT and GW results for the iron marcasite compound, which is structurally closely
related to iron pyrite, are presented in chapter 9. There I try to shed some light on the
question, whether iron marcasite might be suitable for photovoltaic applications.

In chapter 10 the electronic structure of the pyrite compounds FeS2, RuS2, OsS2, NiP2

and ZnS2, and the marcasite compounds FeS2, FeSe2 and FeTe2 are calculated within DFT
and GW to allow for a thorough comparison, and thereby understand the unconventional
results of iron pyrite when applying hybrid functionals or the GW approximation.

The next two chapters cover iron pyrite surfaces, where in chapter 11 the thermodynamic
stability of the iron pyrite (001), (111) and (210) surfaces is discussed and in chapter 12
the electronic structure of the most stable iron pyrite surfaces (001)-S, (111)-3S and
(210)-2S is presented. Finally, the thesis is concluded in chapter 13.
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2. Density-Functional Theory

2.1. Introduction

We scientists working in the large field of condensed matter physics are in the fortunate
situation that we know exactly which problem needs to be solved. The Coulomb interaction
of the cores and electrons is well known in its form and we have to deal at most with two-
particle interactions. The corresponding Hamilton operator of the full problem including
cores and electrons looks as follows:

H = Te + Tc + Ve−c + Ve−e + Vc−c, (2.1)

where1

Te = −
∑
i

1

2
∇2
i (2.2)

is the kinetic energy of the electrons,

Tc = −
∑
α

1

2Mα

∇2
α (2.3)

is the kinetic energy of the nuclei with masses Mα,

Ve−c = −
∑
α

∑
i

Zα
|ri −Rα|

(2.4)

is the Coulomb interaction between the electrons and the nuclei with the atomic number
Zα,

Ve−e =
1

2

∑
i

∑
j 6=i

1

|ri − rj|
(2.5)

is the Coulomb interaction between the electrons and

Vc−c =
1

2

∑
α

∑
β 6=α

ZαZβ
|Rα −Rβ|

(2.6)

is the Coulomb interaction between the nuclei. The spatial coordinates of the electrons
are denoted by ri and those of the cores as Rα.

1In my thesis atomic units with ~ = e = me = 4πε0 = 1 are used for all equations, unless something
else is said. Here, ~ is the Planck constant, e is the elementary charge, me is the mass of an electron
and ε0 is the vacuum permittivity.
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2. Density-Functional Theory

Knowing the problem, we could now ask why we have not solved the time-dependent
or time-independent Schrödinger equation of this simple-looking Hamiltonian to obtain
the general result for all possible condensed matter systems yet. First of all, although the
Hamiltonian does not look very complicated, the Coulomb interaction between the particles
makes it rather tough to solve. Already for three particles the problem can not be solved
analytically and numerical approaches are needed. For many particles it is a necessity
to exploit suitable approximations for the full Coulomb interaction to even succeed with
numerical approaches.

However, there is an even more fundamental restriction based on the dimensionality of
our problem, that we can not solve the Schrödinger equation of the Hamiltonian (2.1).
Let us assume we would like to use a spatial grid for the full-particle wave function
Ψ(r1, .., rN ,R1, ..,RA) of the problem of N electrons and A cores, either to numerically
approach the problem or only to display the wave function. Then, a grid consisting of 10
grid points for each coordinate is a rather typical choice, which leads to in total 103N+3A

grid points which need to be processed and saved. Even for atoms (A = 1) with a few
electrons this becomes impracticable [70]. To demonstrate the severeness of this problem,
let me mention that the total number of electrons in our universe is estimated to be about
1080, which is approximately the number of grid points when using an Fe atom as system
(N = 26, A = 1). Hence, we are never able to even save the full wave function Ψ for the
problem of an Fe atom.2

Therefore, approximations are indispensable to process with the Hamiltonian (2.1). The
first common step to tackle it is to decouple the electronic motion from the motion of the
cores via the Born-Oppenheimer approximation [71]. Since the mass of the cores is much
larger than the mass of the electrons, the electrons can be assumed to adiabatically react
to the movement of the cores. Then, we are left with two separate Schrödinger equations,
one for the cores and one for the electrons. The electronic Schrödinger equation looks as
follows:

He = Te + Ve−c + Ve−e (2.7)

= −
∑
i

1

2
∇2
i −

∑
α

∑
i

Zα
|ri −Rα|

+
1

2

∑
i

∑
j 6=i

1

|ri − rj|
, (2.8)

where the same definitions for the kinetic energy of the electrons, the electron-core
interaction and the electron-electron interaction have been inserted as for Hamiltonian
(2.1).3 A major difference to the terms in (2.1) is that the spatial coordinates of the cores
enter only as parameters and not as variables. But also the pure electronic problem is too
difficult to solve without approximations due to the electron-electron interaction. Basically
all approximations try to derive equations for a system with non-interacting particles.

2This example demonstrating the impossibility of ever solving the full Hamiltonian (2.1) has been
presented in the lecture “Theoretische Festkörperphysik I” of E. Koch in the winter semester 2007/2008
at the RWTH Aachen. I found it so astonishing and convincing, that I needed to include it into this
thesis.

3More precisely I have skipped the core-core interaction in eq. (2.1). Since it is only an additive constant,
this term does not play a significant role except for some special cases as in the Madelung sum.
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2.2. The Electronic Density as Fundamental Variable

There are many approximations based on the many-particle wave function as a basic
quantity. However, a large increase of the dimensionality with increasing particle number
is a general problem of all wave-function based methods in condensed matter physics. Of
course quantum-chemical methods such as Hartree-Fock, Configuration Interaction (CI)
or Coupled Clusters (CC) are able to calculate the approximated wave function of an Fe
atom quite easily, thus there are not as severe problems as for the full Hamiltonian (2.1).
Nevertheless, the computational effort of those wave-function based methods scales in most
cases with at least the 4th power in the number of atoms, drastically increasing for higher-
order calculations, making them practical only for smaller and medium-sized molecules,
whereas they are not useful for large molecules and also solids. For those interested to
learn more about wave-function based quantum-mechanical methods I recommend the
reference [72].
Instead of using the wave function as central quantity, the density-functional theory

(DFT) makes the electronic density to the central quantity of the calculations. At the heart
of DFT lies the mapping of the interacting electron system to a non-interacting electronic
system with the same electronic density. Interestingly, the typical electronic densities look
rather featureless, but still they contain the essential physics of the system. The reduction
from 3N dimensions for the wave function to only 3 dimensions for the electronic density
allows to treat larger systems as compared to the wave-function based methods, and in
addition the framework of DFT is well suited to describe periodical systems, i.e. solids.
Although DFT has been not well-accepted in the community of the chemists for a long
time, since early DFT implementations had problems in predicting the bonding states of
simple molecules [73], nowadays DFT is a standard tool for calculating electronic structures.
The number of new annual publications using DFT is increasing almost every year [44,
74], demonstrating the large influence and the success of this method.

In this chapter I will present the very basics of DFT without going into detail. I
recommend to read the articles by R. Jones about DFT [44, 75] and the references within
for the interested reader. This chapter starts with the Hohenberg-Kohn theorem and then
focuses on the various descriptions of the exchange-correlation energy. In the conclusions
I point out a couple of advantages and drawbacks using DFT for electronic structure
calculations to summarize the chapter.

2.2. The Electronic Density as Fundamental
Variable

The ancestor of DFT goes back to the years 1927 and 1928, where the Thomas-Fermi
method has been presented [76, 77]. This method inspired the development of DFT, since
it focuses on the electronic density as basic variable instead of the wave function. However,
in particular the approximated description of the kinetic energy in this model leads to
severe shortcomings, like the inability to capture chemical bondings in molecules or shell
structures in atoms. From there it took more than 30 years before Hohenberg and Kohn
published their theorems based on the variational principle on the energy [39], which are
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2. Density-Functional Theory

the basis for DFT. The theorems are as follows:

(a) The ground-state properties of a system are uniquely determined by an electron
density n = n(r). Hence, the ground-state wave function is a unique functional of the
electron density: Ψ0 = Ψ0[n].

(b) The ground-state electronic density n0 is the unique density, which mini-
mizes the total energy of the system.

Hence, all ground-state quantities are functionals of the electronic density via O[n] =
〈Ψ0[n]|Ô|Ψ0[n]〉 for an observable Ô. In particular the total energy E = E[n] is of
interest, since its minimization yields the ground-state density.4

Thus, if we find a system of non-interacting electrons with the same ground-state density
as the system with interacting electrons, the ground-state properties of both systems would
be the same and we would have solved the problem of the interacting system, supposed
that we know the functionals. Kohn and Sham did this by connecting the total energy of
the interacting system to the following total energy of a non-interacting system [40]:

E[n] = TS[n] + Eext[n] + EH [n] + Exc[n], (2.9)

where
TS[n] = −1

2

∑
i

〈φi|∇2
i |φi〉 (2.10)

is the kinetic energy of the non-interacting system with φi the one-electron wave functions,

Eext[n] =

∫
d3r n(r)Vext(r) (2.11)

is the energy originating from an external potential Vext(r),

EH [n] =
1

2

∫ ∫
d3rd3r′

n(r)n(r′)

|r − r′| (2.12)

is the Hartree energy comprising the “classical” Coulomb interaction between the electrons
and Exc[n] is the exchange-correlation energy, which is sometimes divided separately into
an exchange and a correlation term. The exchange term is a non-classical Coulomb
contribution, which can be derived within the Hartree-Fock theory. Everything beyond
that is put into a correlation term, which for example contains the difference between the
kinetic energy of the interacting and non-interacting electron system.
Since the one-electron wave functions φi enter the energy directly via TS and in all

other terms via the electronic density

n(r) =
∑
i

|φi(r)|2, (2.13)

4The ground-state density is only unique for a non-degenerate ground state. The extension to degenerate
ground states has been done by Levy [78].
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2.3. The Exchange-Correlation Functionals

the minimization of the energy functional with respect to those φi (thereby also with
respect to the density) leads to the so-called Kohn-Sham equations for these one-electron
wave functions: (

−1

2
∇2 + Veff(r)

)
φi(r) = εiφi(r), (2.14)

where

Veff(r) = Vext(r) +

∫
d3r′

n(r′)

|r − r′| + Vxc(r) (2.15)

is the effective one-particle potential of our non-interacting system. The Kohn-Sham
eigenenergies εi are the Lagrange parameters of the minimization, which enter through the
constraint that the Kohn-Sham wave functions need to be normalized. They have no direct
physical meaning except of the highest occupied Kohn-Sham energy, which is the negative
value of the ionization energy. The quantity Vxc(r) = δExc[n]

δn
is the exchange-correlation

potential, comprising the complicated many-body effects. Numerically, the Kohn-Sham
equations allow us to calculate the ground-state electronic density in a selfconsistent
scheme. After choosing a reasonable starting-point density, the calculated Kohn-Sham
orbitals φi can be used to recalculate a new density via eq. (2.13), which then again can
be inserted into the Kohn-Sham equations. This process can be iterated till convergence
of the density, yielding the ground-state density of the system.

Formally the Kohn-Sham DFT scheme is exact, thus we really could obtain the ground-
state properties of the interacting electron system. Hence, as long as we are not interested
in excited electrons we have formally solved the electronic Hamiltonian (2.8). However,
the exact functional form of Vxc is not known and only approximations can be used. There
is a whole zoo of forms and approximations for the exchange-correlation term, and in the
next section I will briefly introduce the two most basic implementations, which are the
local density approximation (LDA) and the generalized gradient approximation (GGA).

2.3. The Exchange-Correlation Functionals

In principle density-functional theory gives the exact ground-state solution of the fully
interacting electron system, but in practice approximations for the exchange-correlation
energy have to be used. There are many scientists trying to improve the description of the
exchange-correlation by inventing new functionals. Nowadays there is a vast amount of
functionals, which can be (non-)empirical, (non-)local, even orbital-dependent and they
can be classified into much more properties I am not going to discuss in this thesis. More
information about the zoo of functionals can be found for instance in [79]. In this section
I focus on the most prominent local exchange-correlation functionals in use, which are
the exchange correlation functionals within the local density approximation (LDA) [41,
42] and the generalized gradient approximation (GGA) [43].5 The property ’local’ means
that the spatial dependence of the exchange-correlation potential is solely on r and no

5The functionals within GGA are sometimes also denoted as semi-local functionals. In this thesis I will
not make this distinction.
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2. Density-Functional Theory

additional other spatial vectors. The locality of the LDA and GGA functional makes it
relatively simple to use them in computations and since they already provide good results
for a variety of systems, they are the backbone of most DFT calculations.

In the LDA the exchange-correlation term of the homogeneous electron gas εhom
xc enters

via
Exc[n] =

∫
d3r n(r)εhom

xc (n(r)). (2.16)

The pure exchange term of the homogeneous electron gas is proportional to n(r)1/3,
whereas an exact expression for the correlation term in the homogeneous electron gas
is not known up to now. Instead, there are different approaches within the LDA using
approximations for the correlation energy of the homogeneous electron gas, as for instance
the functionals by Vosko-Wilk-Nusair [42] or by Perdew-Zunger [80].

The local density approximation has led to successful predictions of physical quantities
in various systems, which at first glance is quite surprising. It is hardly imaginable that
the formal expressions of the exchange-correlation terms of the homogeneous electron gas
can be used to obtain reasonable results for solids, since the electrostatic potential, and
thus also the electronic density is very different between those two systems. That the
LDA leads to such surprising good results can be contributed to a reasonable description
of the spherical average of the exchange- and correlation-hole due to a cancellation of
systematical errors [81].
The generalized gradient approximation (GGA) is an attempt to improve the LDA

functional by including the spatial derivative of the electron charge density ∇n(r). Hence,
the exchange-correlation energy is of following form:

Exc[n] =

∫
d3r n(r)εxc(n(r),∇n(r)). (2.17)

One could think the idea behind this approach is motivated by a typical Taylor expansion,
where higher-order derivatives enhance the accuracy of a result. However, there is no
simple way to improve the results in DFT. This is very well observable when using higher
derivatives than ∇n(r) in a GGA-like approach, since the results usually become worse as
compared to the experiment. Here, the GGA functional by Perdew-Burke-Ernzerhof [43]
is used, which improves the results as compared to the experiment in some cases. In
particular the geometrical structure optimization and the binding energies are improved for
many systems [82]. For all the pyrite and marcasite compounds investigated in this thesis,
I used the GGA functional instead of the LDA functional, since it leads to better results.

2.4. Conclusions

In this section the basics of density-functional theory (DFT) have been introduced. Com-
pared to wave-function based methods, DFT shows a much more benign scaling with the
system size. Formally, DFT yields the exact solution of the ground state of the many-
electron system. But, since the exact expression for the exchange-correlation functional
is unknown, approximations have to be used. As a major drawback of DFT there is no
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2.4. Conclusions

simple way to systematically improve the results. Hence, there are functionals which might
work well for a class of systems, but not for another class. In addition, DFT is suited to
calculate ground-state properties, whereas it has only a limited predictability for excited
electronic states.
The most basic exchange-correlation functionals are based on the LDA and the GGA,

which both are local functionals in the spatial coordinates. These two approximations
lead to good results for various systems and due to the simplicity of these approaches
they have become the backbone of nowadays calculations within DFT. However, the local
exchange-correlation functionals suffer of a systematical underestimation of band gaps in
semiconductors and insulators due to a wrong description of the derivative discontinuity
of the exchange-correlation energy with respect to the particle number [52]. Additionally,
the self-interaction error caused by the missing cancellation of the self-interaction in
the Hartree-term with the local exchange-correlation functionals might lead to a wrong
prediction of localized states [80]. Hence, methods beyond LDA and GGA might be
necessary to remedy these shortcomings. In the next chapter a couple of those methods
will be introduced.
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3. Density-Functional Theory
beyond the LDA and the GGA

3.1. Introduction

The local exchange-correlation functionals within the LDA and the GGA in density-
functional theory suffer of several shortcomings, which I have already mentioned in the last
section of the previous chapter. In particular the underestimation of band gap sizes poses
a problem for my investigations of the pyrite and marcasite compounds. Hence, methods
beyond the LDA and the GGA are necessary to remedy these shortcomings.

There are plenty of methods, which improve the description of semiconductors compared
to “conventional” LDA and GGA calculations. Here, I am going to focus only on a
handful of them, namely DFT+U , and the hybrid functionals PBE0 and HSE06. The GW
approximation of the many-body perturbation theory is derived in a different spirit and
will be discussed in the next chapter. All methods discussed here need the “conventional”
DFT calculations as a starting point. The simplest and fastest of those methods is
DFT+U , which might shift and change the bandwidth of a subset of electronic bands.
The hybrid functionals act on all bands and no input parameter U is needed. Furthermore,
they can lead to changes in the character or the curvature of the bands, which is of
importance in several cases as for instance in EuO [83]. However, the computational effort
is largely increased compared to “conventional” DFT and DFT+U . An expensive, but
state-of-the-art method to calculate band gaps is the GW approximation, since it is the
only approach of those discussed here, which comprises electronic excitations.

For most semiconductors the predicted band gap size considerably improves with respect
to the experimental values by using these methods. I will now give more details in the
specific sections of this chapter.

3.2. The DFT+U Method

Despite the increasing number of other existing more sophisticated methods, which become
more feasible with growing computational power, the DFT+U method is still a popular
approach to overcome some of the shortcomings of “conventional” DFT calculations. The
popularity is based on the simplicity of DFT+U , allowing easily implementations into
existing frameworks, as well as the low computational demand comparable to “conventional”
DFT calculations. “Conventional” DFT calculations tend to an over-delocalization of the
electrons, i.e. they lack an accurate description of localized electrons, which might be
important for transition-metal compounds and is important for rare-earth compounds.
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3. Density-Functional Theory beyond the LDA and the GGA

Inspired by the single-band Hubbard model, in DFT+U a Hubbard-U parameter accounts
for the strong Coulomb interaction of the localized electrons. This Hubbard-U parameter
is usually applied only to d- or f -electrons, thereby introducing an orbital-dependence of
the energy functional into the DFT scheme:

EDFT+U [n(r)] = EDFT[n(r)] + EU [{ni}]− Edc[{ni}], (3.1)

where ni are the electron occupation numbers for the orbitals i,1 EDFT is the total energy
of the “conventional” DFT calculation, EU is the Hubbard-U contribution to the total
energy and Edc accounts for the double counting of the former two terms. For a simplified
DFT+U approach with only one U parameter, EU and Edc look as follows:

EU =
U

2

∑
i6=j

ninj, (3.2)

Edc =
U

2
N(N − 1), (3.3)

with N =
∑

i ni the total number of electrons. Hence, the Hubbard-term EU only adds a
plus of Coulomb repulsion, if both states i and j are occupied.

In the Jülich DFT code Fleur [66] a more elaborate DFT+U scheme is used, involving
not only a Hubbard-U , but also a Hund-exchange parameter J and higher terms. Moreover,
the full electronic density matrix depending on the atom and the angular momentum
quantum number l is treated in a multiband Hubbard model. The Hund-exchange parameter
J considers for an energy difference between singlet and triplet spin-configurations for two
electrons in two different states i and j. It is common to introduce an effective Hubbard-U
parameter Ueff = U −J . The energy functionals EU and Edc look more complicated using
Ueff , U and J . Furthermore, the double counting term is not unique and the two most
prominent limits are the fully-localized limit and the around-mean field limit. The former is
suited for quite localized electron systems, whereas the latter is better suited for systems
exhibiting weak orbital polarizations. I will not present the expressions for EU and Edc in
this thesis, but for the interested reader I recommend to take a look into [84].
The Coulomb repulsion mediated via the Hubbard-U term essentially shifts the orbital

energies of the corresponding states; usually these are the d- or f -states. This can be seen
by taking the derivative of the total energy (3.1) with respect to the occupation number
ni, which leads to

εDFT+U
i =

∂EDFT+U

∂ni
= εDFT

i + U(1/2− ni), (3.4)

where εDFT
i and εDFT+U

i are the orbital energies for the “conventional” DFT calculation and
the DFT+U calculation, respectively. The occupied orbital energies are shifted by −U/2,
whereas the unoccupied orbital energies are shifted by +U/2. Note that the expressions
for the orbital energies become more complicated for the DFT+U method accounting U

1The notation i for the orbitals is an abbreviation for the angular momentum quantum number, the
magnetic quantum number and the electron spin, i.e. i = l,m, σ.
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and J . Nevertheless, the main feature remains, which is a shift of the localized bands
to lower or higher energies depending on their occupation status. As a consequence this
might lead to larger band gap sizes as compared to the DFT calculation within the LDA
or GGA, whenever the band edges are defined by those localized states.
The Hubbard-U parameter might have a crucial influence on the size of the band

gap, whenever the gap is formed by states affected by U . This parameter can either be
fitted to experimental data or it can be determined via approaches like the constrained
random-phase approximation (c-RPA) [84–86]. In the first case DFT+U becomes an
empirical method and the results should be regarded with caution, in particular if only
the size of the band gap has been used as a fitting parameter. The DFT+U method
might have a considerable influence on the structural stability, optical properties, and more.
Those results might become worse compared to the experiment when applying DFT+U in
an empirical sense. Of course the same might be the case when calculating the Hubbard-U
parameter via c-RPA, but then the approach is in some sense ab-initio and thereby in itself
consistent.

In DFT+U not only the size of the band gap might change, but also the band character
and the curvature can be slightly altered due to changes in the orbital hybridization.
However, for some systems the curvature of the bands is described poorly within “con-
ventional” DFT, which might demand for more sophisticated methods than DFT+U to
significantly improve the description. In the next section I will introduce two prominent
hybrid functionals, which can satisfy those demands.

3.3. Hybrid Functionals

The fundamental Kohn-Sham band gap εKS
gap, i.e. the band gap determined by the highest

occupied and lowest unoccupied Kohn-Sham energy, is not the real fundamental band gap
of the semiconductor. The real fundamental band gap εgap can be obtained via the total
energy differences E(N + 1) +E(N − 1)− 2E(N), thereby DFT calculations with N + 1,
N and N − 1 electrons need to be conducted. Taking the limit of infinitesimal particle
number changes ∆N we obtain

εgap = εKS
gap +

δE

δn

∣∣∣∣
N+∆N

− δE

δn

∣∣∣∣
N−∆N

, (3.5)

where δE
δn

∣∣
N+∆N

− δE
δn

∣∣
N−∆N

is the derivative discontinuity of the exchange-correlation
energy with respect to the particle number. The underestimation of band gap sizes
in “conventional” DFT calculations is mainly caused by an inadequate description of
this derivative discontinuity. Local exchange-correlation functionals as for instance the
LDA and GGA functionals do not describe the derivative discontinuity, usually leading
to underestimated band gaps due to εKS

gap < εgap. However, the self-interaction error,
and additional shortcomings in the description of the exchange energy, as well as in the
correlation energy might have also considerable influence on the size of the band gap.
Hence, the systematic underestimation of the band gap size for local exchange-correlation
functionals is more a rule of thumb than a fact.
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3. Density-Functional Theory beyond the LDA and the GGA

On the other hand, the Hartree-Fock (HF) approximation yields no self-interaction error,
the exchange energy is treated exactly and the derivative discontinuity is not zero. But due
to missing electron correlation, the HF approximation is not able to produce reasonable
results for molecules or solids. At the heart of hybrid functionals lies the mixing of a
fraction local exchange-correlation with a fraction non-local HF-exchange. Thus, there is
the hope to remedy the shortcomings of the local exchange-correlation for solids without
loosing the ability to describe solids reasonably. The mixing factor for the HF-exchange
has been determined to 25% by Becke et al. [87], leading to the PBE0 functional with
the following exchange-correlation energy:

EPBE0
xc = EPBE

xc +
1

4

(
EHF

x − EPBE
x

)
, (3.6)

where EPBE
x and EPBE

xc is the exchange and exchange-correlation energy of the PBE (GGA)
functional [43], and EHF

x is the exchange energy in HF.
Since the HF-exchange introduces a non-local potential Vx(r, r′) into the Kohn-Sham

scheme, the effort to solve the equations is drastically increased as compared to “con-
ventional” DFT. Typically, the calculations need about an order of magnitude more
computational time. Additionally, PBE0 treats both the exchange and correlation as a
long-range interaction, which consumes a lot of time. However, in reality, polarization,
thus correlation effects, screen the long-range exchange, reducing a bit the band gap size
of the system, explaining why the band gaps predicted within PBE0 are usually too large
compared to experiment. Hence, the screened hybrid functional HSE by Heyd, Scuseria
and Ernzerhof [88, 89] has been constructed, which separates the exchange energy of PBE
into a long-range (LR) and a short-range (SR) contribution, whereas the HF-exchange is
only accounted within short-range.2 For this the Coulomb interaction ν(r) is divided into
a long- and short-range part νLR(r) and νSR(r) via the Gaussian error-function erf(ωr):

ν(r) =
1

r
=

erf(ωr)

r
+

1− erf(ωr)

r
=: νLR(r) + νSR(r). (3.7)

Thus, the screening is introduced in an artificial way via the Gaussian error-function with
an optimized screening parameter ω = 0.11 in HSE06 [89]. The exchange-correlation
energy within the HSE functional looks as follows:

EHSE
xc = EPBE

xc +
1

4

(
EHF,SR

x − EPBE,SR
x

)
. (3.8)

Although the screening is artificial, the results for the band gaps considerably improve as
compared to PBE and PBE0 [56, 57]. The HSE functional also improves the predicted
lattice parameters compared to PBE, which is also already the case for the PBE0 functional.
As a rule of thumb the screened hybrid functional is well adapted for semiconductors with
moderate band gap sizes. For large band gap semiconductors the screening is overestimated
in HSE leading to smaller band gaps as compared to experiment, and for small band gap

2Historically, the HSE functional has been constructed for computational convenience first. Then it
turned out that also the band gaps are improved due to the implemented screening.
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semiconductors and metals the situation is the contrary with an underestimated screening.
There are modified screened-exchange approaches with other mixing parameters than 25%
to improve the description for small band gap and large band gap semiconductors [90, 91].
Most of them use the inverse of the static dielectric constant as mixing parameter due
to a straight connection between polarizability and screening effects. In other cases the
mixing parameter is empirically determined in the spirit of the DFT+U approach.
For more details about hybrid functionals, in particular about the screened hybrid

functional HSE, I recommend to read the PhD thesis of M. Schlipf [83]. More information
on orbital-dependent functionals in general is given in reference [92]. The implementation
into the Jülich DFT code Fleur is explained in the references [68, 93].

3.4. Conclusions

In this chapter I have briefly discussed the DFT+U method and the hybrid functionals
PBE0 and HSE, which both have earned their merits to overcome the shortcomings of
local functionals like the LDA or GGA functionals. For most semiconductors the band gap
prediction is systematically improved, although there are cases where it might become
worse.

The DFT+U method is simple and allows for fast computation, but the determination
of the Hubbard-U parameter is a potential problem. Empirical fittings should be regarded
critically and exploiting methods like c-RPA to determine the U parameter are costly.
On the other hand, hybrid functionals are a much more sophisticated approach to

attenuate the problems of local functionals. With hybrid functionals the lattice parameters
for some systems are improved compared to “conventional” DFT calculations, e.g. for
Perovskites or in the Europium chalcogenides series as shown in the references [83, 94].
When accounting for an (artificially incorporated) electron screening as it is done in the
HSE functional, the prediction of band gaps becomes also better. However, due to the
inclusion of the Hartree-Fock exchange the potential becomes non-local, which makes the
calculations very costly.
A point of debate is the value of the mixing parameter of the Hartree-Fock exchange,

which is chosen to be 25% for “conventional” PBE0 and HSE calculations. With this choice
of the mixing parameter small band gap and large band gap semiconductors might be
described poorly. Therefore, there are approaches combining the static dielectric function
with the mixing parameter and thus controlling the screening to improve the description
for these semiconductors as well. Since the choice of the mixing parameter is not unique,
critics might point out that this is alike a more complicated DFT+U method.
In the next chapter I will introduce an additional method beyond the LDA and GGA,

namely the GW approximation to many-body perturbation theory. It is the only method
discussed in this thesis, which is even beyond DFT, since it is designed to accurately
calculate electronic excitations. Hence, it became the state-of-the-art tool to predict band
gaps.
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4.1. Introduction

Density-functional theory (DFT) is an electronic ground state theory, and thus it is not
the method of choice to predict accurate results about excited states. Furthermore, in
difference to, for instance the total energy, the Kohn-Sham energies and wave functions
are only mathematical tools and except of the highest occupied Kohn-Sham energy do
not have a physical meaning. Hence, strictly speaking the whole electronic band structure
calculated via DFT can not be directly related to the “real” band structure of the fully
interacting electron system, i.e. the excitation energies of all quasiparticles of the system.
Although in many cases the band structure within DFT already gives a nice qualitative
understanding, explaining the enormous amount of references focusing on the analysis of
those band structures, a theory beyond DFT is vital to predict accurate electronic band
structures. The many-body perturbation theory is such a framework.

I will focus on the GW approximation to the many-body perturbation theory [54], which
corrects the Kohn-Sham energies (or others, e.g. Hartree-Fock energies) and in the case
of a selfconsistent approach also the Kohn-Sham wave functions, and thus remedies a
couple of shortcomings caused by the description of DFT. In particular the sizes of the
band gaps are considerably improved, making the GW approximation a state-of-the-art
method to describe band gaps. Within the GW approximation, additional to the N -
electron system already described in DFT, an (N + 1)- and (N − 1)-electron system
can be calculated, modeling the experimental situation of photoemission and inverse
photoemission spectroscopy. That explains the success in predicting band gaps within GW .
Essential to the GW approximation is the introduction of a screened Coulomb interaction,
originating from electrons, which are screened by their oppositely charged Coulomb holes,
leading to an effective reduction of the charge of those electrons. While the electrostatic
screening is introduced in a purely mathematical way in the hybrid functional HSE as
demonstrated in the last chapter, it enters in a physical sense in the GW approximation.
The electron and its Coulomb hole form a quasiparticle and these quasiparticles are

independent particles to a good approximation.1 Hence, also the GW approximation leads
to a set of equations for non-interacting (quasi-)particles. The so-called self energy Σ acts
as potential for those quasiparticles. Since Σ is a non-local and energy-dependent quantity,
GW calculations are computationally very demanding. Typically, the calculations take
about 1-2 orders of magnitude more computational time as compared to “conventional”
DFT calculations. Due to this huge computational effort, single-shot GW calculations are
still the standard, whereas selfconsistent GW approaches like for instance quasiparticle

1At least that is true close to the Fermi energy, since there is a finite lifetime otherwise.
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W

Σ

G

Γ̃P

Figure 4.1.: Hedin’s equations [54] comprise five characteristic quantities, the self energy
Σ, the Green’s function G, the vertex function Γ̃, the polarizability P and
the screened Coulomb interaction W into a highly-complicated set of integro-
differential equations. This flow chart symbolizes the connection of those
quantities and the sequence of their calculation.

selfconsistent GW (QSGW ) [61, 62] slowly catch up with increasing computer power.
In this chapter I will introduce the most important characteristic quantities of the GW

approach, followed by a brief discussion about single-shot GW versus selfconsistent GW .

4.2. Characteristic Quantities in the GW Approach

The many-body problem can be formally solved by a set of five integro-differential equations,
the so-called Hedin’s equations [54]. These equations are rather complicated and up to
now could only be solved for simple systems under additional approximations. There is
one equation for the self energy Σ, the Green’s function G, the vertex function Γ̃, the
polarizability P and the screened Coulomb interaction W . In Fig. 4.1 an approach to solve
Hedin’s equations is displayed, showing the order in which these five quantities need to be
solved iteratively. Since those quantities are also essential for the GW approximation, I
will briefly discuss them and show the connection between the Hedin’s equations and the
GW approximation. I will not present Hedin’s equations or corresponding derivations in
this thesis and refer the interested reader to the literature and the references within [54,
95].
First let me introduce the one-particle Green’s functions G(r, t; r′, t′), which are also

called one-particle propagators, since they describe the propagation of one additional
electron or hole in the system from the space-time coordinate (r, t) to another coordinate
(r′, t′). Thus, we describe not only an N -electron system, but also the (N + 1)- and
(N − 1)-electron system, allowing to model the situation of (inverse) photoemission
experiments. Hence, we are also able to calculate the “real” band gap of the system. The
one-particle Green’s function contains much less information than the full many-body wave
function, but still it allows to calculate all expectation values of single-particle operators and
it comprises all possible single electron excitations. The applications of Green’s functions
are very diverse and I recommend the book by G. F. Roach [96] to the interested reader.
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The next quantity I would like to introduce is the polarizability P (r, r′, ε), which is
closely related to the dielectric function ε(q, ω) describing the response of the system
to electrical fields. The injection of an additional electron into the system leads to an
accumulation of positive charge around this electron, which is called the Coulomb hole
of that electron. The Coulomb hole leads to a reduction of the effective charge of each
electron. The response of the system on the additional electron, i.e. the creation of the
Coulomb hole, is described via P . The Coulomb hole and the electron always coexist,
and thus they can be described as a quasiparticle. The screened Coulomb interaction
W (r, r′, ε) is the interaction between those quasiparticles, similar to the bare Coulomb
interaction being the interaction between the “naked” electrons. Since the screened
Coulomb interaction W is significantly smaller than the bare Coulomb interaction, those
quasiparticles can be described in a non-interacting particle picture in good approximation.
Therefore, treating W and the Green’s function of the interacting electron system G
in perturbation theory as it is done in Hedin’s equations is much more promising than
using the bare Coulomb interaction and the non-interacting Green’s function G0 as basic
quantities for many-body perturbation theory as it has been done before Hedin [97]. The
screened Coulomb interaction is essential for the description of electronic excitations and
can be tagged as the most important additional physical effect in the GW approximation
as compared to the Hartree-Fock approximation.
The self energy Σ(r, r′, ε) acts as a potential connecting the non-interacting electron

system to the interacting electron system. The role as potential becomes clear in the
Dyson equation, which couples the Green’s functions of the interacting and non-interacting
system via G = G0 +G0ΣG, where G0 is the Green’s function of a non-interacting electron
system in the same external potential. The diagonal elements of Σ contain the quasiparticle
energy corrections.2 The quasiparticle energies are complex and their imaginary part is
related to the lifetime of the quasiparticle. Typically, the lifetime is smaller the larger the
excitation energy is. Since the self energy Σ(r, r′, ε) is non-local and energy-dependent,
calculations including this quantity are rather time-consuming and complicated.

The vertex function Γ̃(r, t; r′, t′; r′′, t′′) is the most complicated quantity of these five,
having a dependence on three spatial vectors and making it difficult to find a simple physical
interpretation. From the perspective of the GW approximation, all the many-body effects
beyond GW are comprised in the vertex corrections. These are for instance excitonic
effects or strongly correlated electronic phenomena. However, the vertex function is still
elusive and is known even for simple systems up to now only approximately.
After explaining the most basic quantities in Hedin’s equation, let me indicate the

connection between these equations and the GW approximation. In the GW approximation
the vertex function is approximated to Γ̃(r, t; r′, t′; r′′, t′′) = δ(r, t; r′, t′)δ(r, t; r′′, t′′)
making the four remaining equations of Hedin much less complicated. Hence, all many-
body effects beyond the GW approximation are hidden in those elusive vertex corrections.
With that simplified vertex function the equation for the self energy Σ turns out to be

2To be more precise, the quasiparticle energy corrections to a DFT result can be calculated from the
quantity Σ− Vxc. Depending on the calculation scheme, either only the diagonal elements or the full
matrix in the basis of the Kohn-Sham orbitals can be used.
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formally Σ = iGW , explaining the name GW approximation. The eigenvalue equation for
the quasiparticle energies and wave function looks similar to the Kohn-Sham equations,
but note that they are non-linear in the quasiparticle energies εQP

i :(
−1

2
∇2 + Vext(r) + VH(r)

)
φi(r) +

∫
d3r′ Σ(r, r′, εQP

i )φi(r
′) = εQP

i φi(r), (4.1)

where εQP
i are the complex quasiparticle energies, φi(r) are the corresponding wave

functions, Vext(r) is the external potential and VH(r) is the Hartree potential as introduced
in the chapter 2 about DFT. The self energy takes over the role to determine the exchange
energy and correlation energy of the electron system. Due to the energy dependence
of the self energy Σ, this exchange-correlation potential is different for each state. In
addition the non-locality of the self energy leads to long-range interaction effects, which
make the calculations even more complicated. For instance, for the description of surfaces
and thin films in many DFT codes a vacuum layer has to be defined, which needs to be
thick enough to prevent a mirror interaction due to periodic boundary conditions (see
chapter 5). Within GW the long-range interaction makes it very tough to reduce these
mirror interaction effects.
The numerical implementation of the GW approximation is highly complicated and I

would like to point out only a few points. For more details I refer to the references [69,
98–100] and to some extent I will discuss it in more detail in the chapter 5. For the most
basic quantities within GW , as for instance the polarization function, one has to sum
over unoccupied states. In practice the sum only goes over a finite amount of unoccupied
bands and it turns out that in some cases the convergence with the number of those bands
might be rather slow. For instance, in the case of ZnO about 3000 bands are necessary to
converge the fundamental band gap, whereas only a small fraction of those are occupied
bands [101, 102]. When accounting for such high-lying band energies, it is also highly
non-trivial to guarantee reasonably described wave functions. It is quite common within
the GW approximation to approximate the quasiparticle wave functions by those of the
converged Kohn-Sham system within DFT, at least when performing single-shot GW
calculations. To get a correct description of these wave functions for high-lying energies, it
might be that the standard DFT basis set has to be extended, e.g. many higher-derivative
local orbitals (HELOs) and semi-core local orbitals need to be included into the basis
representation. In addition, the plane-wave cutoff kmax might have to be increased, which
on the other hand might lead to an over-complete basis leading to numerical problems. I
will talk about these numerical parameters and the difficulties in more detail in the next
chapter in the context of the full-potential linearized augmented plane-wave (FLAPW)
method. Hence, you can consider this paragraph as an “appetizer” to those numerical
difficulties.

4.3. Single-Shot and Selfconsistency

Nowadays, there exist plenty of different GW approximation schemes. First of all, they
can be distinguished into the single-shot GW schemes and the selfconsistent approaches.
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The single-shot GW schemes are very common and were the only feasible approaches in
earlier days due to the required computational effort of the GW calculations. They are also
denoted as G0W0 to emphasize that the Green’s function G and the screened Coulomb
interaction W are both not treated selfconsistently and are instead calculated from the
DFT results. The G0W0 calculations are in general starting-point dependent, in which
the starting point is indicated by the notation G0W0@starting-point, e.g. G0W0@PBE or
G0W0@HSE06. The degree of starting-point dependence depends on the type of system.
A good test for the starting-point dependence is offered by the DFT+U method, where
the starting point can be changed in a controllable way via the Hubbard-U parameter.
There are plenty of references in which the starting-point dependence of the single-shot
GW calculations is discussed [58–60, 103]. In this thesis it will be discussed for iron pyrite
in chapter 8.
In single-shot GW the Kohn-Sham energies are corrected by the quasiparticle energy

corrections, but the wave functions are usually not altered, i.e. in the representation of
the Kohn-Sham wave functions, only diagonal matrix elements 〈φi|Σ|φi〉 are included
in eq. (4.1). However, there are approaches accounting for the non-diagonal elements
of the self energy (and the exchange-correlation potential in DFT) in the basis of the
Kohn-Sham orbitals, which might have a considerable influence on the hybridization of the
wave function predicted within G0W0. In the case of the tetradymites, Aguilera et al. have
shown that the treatment of those non-diagonal elements of Σ is crucial to obtain a good
agreement of the band gaps with the experiment [104].

To reduce the starting-point dependence significantly or even dispose of it, selfconsistent
GW methods can be exploited. There are plenty of selfconsistent GW schemes, in some
cases G is determined selfconsistently, in others W or even both quantities. However, the
up to date most accepted selfconsistent GW method is the quasiparticle selfconsistent
GW (QSGW ) approach [61, 62], since most selfconsistent GW methods tend to a large
overestimation of the band gaps, whereas QSGW tends only to a slight overestimation.
This overestimation of band gaps within selfconsistentGW methods is believed to be caused
by the missing description of excitonic effects and other many-body effects comprised
in the vertex corrections. The extraordinary well predicted band gaps of main group
semiconductors within single-shot GW might be caused by fortuitous error-cancellation,
since the missing vertex corrections might cancel against the overestimated screening
effects. A more detailed discussion on the single-shot GW and QSGW results of simple
semiconductors is presented in appendix A.
In this thesis I will focus only on QSGW as selfconsistent GW method. In Fig. 4.2

the scheme of the QSGW method is depicted, starting with the mean-field solution
for the exchange-correlation potential Vxc obtained in a DFT calculation. From there
a single-shot GW calculation yields the self energy, which is an energy-dependent and
in general not hermitian quantity. By integrating over the energy and “hermitianizing”
the self energy, which then can be used as effective potential in a DFT calculation, we
obtain a new non-local mean-field solution. With this new mean-field solution a single-shot
GW calculation allows to obtain again the self energy. This process is iterated till the
mean-field solution within DFT and the “hermitianized” self energy converge to the same
value. With other words in each iteration of QSGW the potential for the quasiparticle in
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Mean-field solution
Vxc(r)

GW self energy
Σ(r, r′, ε)

“Hermitianize”

Mean field solution
Σ(r, r′)

GW self energy
Σ(r, r′, ε)

“Hermitianize”

Figure 4.2.: The calculation scheme of the quasiparticle selfconsistent GW (QSGW )
method [61, 62]. After obtaining a mean-field solution for the exchange-
correlation potential Vxc within DFT, a single-shot GW calculation yields
the self energy Σ(r, r′, ε). By “hermitianizing” this quantity and using it as
effective potential for another DFT calculation, another mean-field solution
Σ(r, r′) can be obtained, which again leads to a self energy when applying
single-shot GW . This process can now be iterated till convergence.

GW is mapped to an effective potential within DFT. The QSGW method yields not only
the corrected quasiparticle energies, but also the wave functions are corrected. The biggest
advantage of the QSGW calculations is the strongly reduced starting-point dependence
as compared to single-shot GW . In some cases this might be essential to even predict the
correct electronic condition, i.e. metallic or semiconducting. A system wrongly predicted
to be metallic within “conventional” DFT might not become a semiconductor after a single
GW step, since the wave functions might need to change significantly. In such cases
QSGW might be a remedy.

4.4. Conclusions

The GW approximation is a powerful beyond-DFT method based on many-body pertur-
bation theory allowing to accurately predict electronic excitation energies, and thus also
band gaps. In contrast to DFT, many-body perturbation theory describes the process of
adding an electron to the system or removing one electron from the system. The formation
of Coulomb holes around the electrons, forming together with the electrons so-called
quasiparticles, which then interact via a screened Coulomb interaction, is the essential
ingredient to obtain reasonable excitation energies. However, GW calculations require
about 1-2 orders more computational time as compared to “conventional” DFT calculations.
That is why for a long time GW calculations have been restricted to single-shot GW
calculations essentially. Although the band gaps within single-shot GW have been in
excellent agreement with experiment for many systems and material classes, the method
suffers from a dependence on the starting point, which can lead to completely wrong
predictions of the electronic state in some cases. The quasiparticle selfconsistent GW
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(QSGW ) method helps to significantly reduce this starting-point dependence. The band
gaps within QSGW are usually slightly overestimated with respect to experiment, which
is believed to be coming from the missing vertex corrections. On the other hand, the
single-shot GW method seems to profit from a fortuitous error-cancellation of the missing
vertex corrections and an overestimated screening. However, both methods have earned
their merits in the prediction of band gaps and beyond.

In general the GW approximation is not adapted to describe optical properties, since a
two-particle Green’s function is necessary to describe electron-hole interaction. Therefore,
also excitonic effects are not included in the theory of the GW approximation, which might
be a problem for some systems if we compare to optical absorption spectra. However, for
most systems the excitonic effects are negligible and the optical properties can be already
approximately described within the GW approximation.

In this chapter I gave only a brief introduction into the topic of the many-body pertur-
bation theory and the GW approximation. In particular, the numerical difficulties of those
methods have been only sketched. Some more information on the numerical difficulties
can be found in the next chapter 5 about the FLAPW method. The interested reader
might find the references [61, 93, 100, 105] useful in this context.
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5. Full-potential linearized
augmented plane-wave
(FLAPW) method

5.1. Introduction

In the previous chapters I have introduced the density functional theory (DFT) and
the GW approximation, which both lead to equations for non-interacting particles. In
the case of DFT these are the Kohn-Sham equations (2.14), whereas the quasiparticle
equations (4.1) are obtained within the GW approximation. The numerical solution of
these eigenvalue equations can be performed via a transformation to matrix equations
(linear algebra problems) by choosing proper basis functions. Then, there are plenty of
well-known algorithms to diagonalize the matrix.

The choice of the basis has a crucial influence on the further numerical approaches. An
intuitive and simple choice are plane-wave functions. For instance the Laplace-operator
from the kinetic energy is transformed into a simple multiplication within a plane-wave
basis. However, there is a major disadvantage of a pure plane-wave basis, which is the
necessity to introduce pseudopotentials to describe the behavior of the wave functions
close to the nuclei [106, 107]. Without pseudopotentials the oscillations of the wave
functions close to the nuclei require an unfeasible large amount of plane-waves to be
described. A pseudopotential has a much softer gradient close to the core than the “real”
potential, but still captures the essential physics, and thus the wave function close to the
core can already be described with a reasonable amount of plane-waves. There are plenty
of pseudopotentials for each chemical element in- or excluding the effects of semicore
states. The transferability of these pseudopotentials might be quite limited in some cases.1

In addition, the accuracy of most pseudo-potential methods is usually worse than that of
the full-potential linearized augmented plane-wave (FLAPW) method, which is explained
in this chapter.
Another prominent choice for a basis are localized functions as for instance atomic

orbitals [109–111].2 Although those functions are conceptually more complicated than the
plane-waves, the matrices become thinly occupied for large systems, for which specific

1A pseudopotential is usually obtained from a specific system, and thus it might not be adapted for
a different system. This adaptability of the pseudopotential is referred to as transferability in the
text. For instance a pseudopotential for Fe atoms calculated from bcc-Fe might be too inaccurate to
describe Fe atoms in a chain-like structure. For more details see also [108].

2Tight-binding models are usually also based on a basis of atomic orbitals (c.f. [112, 113]).
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MT

IR

Figure 5.1.: The space is divided into muffin tins (MT) and the interstitial region (IR) in
the (L)APW method. The muffin tins are centered around the atomic core
positions.

algorithms might save a considerable amount of computational time. However, the
convergence of the results with respect to that basis is far from trivial, since it is difficult
to expand the basis in a systematical way.
For the calculations in this thesis the linearized augmented plane-wave (LAPW) basis

has been used, which most important concept is the division of space into spheres around
the positions of the nuclei, referred to as muffin-tins in the following, and the interstitial
region in between (see Fig. 5.1). In the interstitial region plane-waves are used for the
basis, whereas radial functions obtained from the solution of an atomic-like problem and
spherical harmonics are exploited in the muffin tins. Thus, the basis is already suited to the
physical conditions of a system consisting of atoms. For instance, the oscillations close to
the nuclei are already captured in the basis, and thus the introduction of pseudopotentials
is not necessary. This choice of a basis is very efficient, considerably reducing the necessary
amount of basis functions for a given accuracy. However, it is no “beginner’s basis”, both
being conceptually and from the point of view of convergence quite difficult.
In this chapter I will introduce the (L)APW basis and the important numerical issues

behind this approach. The modifications if using hybrid functionals or using a film-geometry
will be also discussed. In this chapter I will only present the very basic mathematical
expressions behind the FLAPW approach. For more details I refer to the following
references [65, 114–116].

5.2. The Basics of the FLAPW Method

5.2.1. The LAPW Basis

The Kohn-Sham equations (2.14) can be transformed into matrix equations by choosing a
basis with basis functions ϕjk(r). The Kohn-Sham orbitals φik can be written as linear
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combination of these basis functions:

φik(r) =
∑
j

cij(k)ϕjk(r), (5.1)

where the cij(k) are the expansion-coefficients of the linear combination. Here, I have
already introduced a k-dependence originating from the translational symmetry of the
system.3 Inserting the expansion of φik into the Kohn-Sham equations and multiplying
with ϕj′k(r) from the left side leads to following generalized eigenvalue problem:

H(k)ci(k) = εi(k)S(k)ci(k), (5.2)

where H(k) is the Hamilton matrix and S(k) the overlap matrix in representation of the
basis, i.e.

[H(k)]j′j =

∫
d3r ϕ∗j′k(r)

(
−1

2
∇2 + Veff(r)

)
ϕjk(r) (5.3)

[S(k)]j′j =

∫
d3r ϕ∗j′k(r)ϕjk(r) (5.4)

are the elements of the matrices. In the case of an orthonormal basis the overlap matrix
becomes the unity matrix. The coefficients cij(k) build the vectors ci(k), which are the
Kohn-Sham orbitals in representation of the basis. Now that the (generalized) eigenvector
equation is written in matrices, it can be solved with a variety of well-known algorithms to
obtain the Kohn-Sham orbitals φi and Kohn-Sham energies εi.

I have already discussed in the introduction of this chapter that the choice of the basis
has a crucial influence on the simplicity of the Hamiltonian H(k) and the numerics of the
eigenvalue problem.
Before discussing the linearized augmented plane-wave (LAPW) basis, I follow the

historical course and start with the related augmented plane-wave (APW) basis. The APW
basis yields a good accuracy of the results by using a reasonable amount of basis function.
In Fig. 5.1 the division of space for the APW method is shown, and the basis functions
are defined in the muffin-tins (MT) and interstitial region (IR) separately:

ϕk+G(r) =

{ 1√
Ω

ei(k+G)r, r ∈ IR∑
lm a

k+G
µlm uµl(rµ, ε)Ylm(r̂µ), r ∈ MT(µ)

(5.5)

where Ω is the volume of the unit cell, G is a reciprocal lattice vector, l and m denote
the angular and magnetic quantum numbers, µ is an index for the µ-th muffin tin, ak+G

µlm

is a coefficient, rµ = r −Rµ is the spatial vector centered around the muffin tin at Rµ,
uµl(rµ, ε) is a radial-dependent function, and Ylm(r̂µ) are the spherical harmonic functions

3A system exhibiting translational symmetry obeys the Bloch theorem, which states that the electronic
wave function can be expressed as a lattice periodical function multiplied with a plane wave eikr.
Therefore, those k-vectors of the reciprocal space fulfilling the periodicity conditions of the chosen
supercell are good quantum numbers of the system.
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depending on the angular part of the spatial vector rµ. The radial-dependent functions
are constructed such that they fulfill the radial, spherical Schrödinger-type equation:(

−1

2

∂2

∂r2
+
l(l + 1)

2r2
+ V µ

sph(r)

)
ruµl(r, ε) = εruµl(r, ε), (5.6)

where ε is an energy parameter and V µ
sph(r) is the spherical part of the potential inside

the µ-th muffin tin.
Note that the uµl(r, ε) depend on an energy ε, and it turns out that a fixed energy

parameter in the radial Schrödinger equation is not accurate enough to guarantee reasonable
results from the Kohn-Sham equations. The Kohn-Sham energies themselves have to be
used as energy parameters for the radial functions to construct an accurate basis. However,
this leads to non-linear eigenvalue equations, which are computationally very demanding.
Additionally, there are some other minor disadvantages of the APW basis, which are
discussed in reference [117]. Therefore, a linearized approach of the augmented plane-wave
method has been developed to avoid the non-linearity in the eigenvalue equations.
The central difference between the linearized augmented plane-wave (LAPW) basis to

the APW basis refers to the energy-dependence of the radial function uµl(r, ε). Instead of
using the Kohn-Sham energies for ε, a Taylor expansion at a reasonably chosen energy
parameter Eµl can be used for the radial functions uµl, describing an l-like state at atom
µ:

uµl(r, ε) = uµl(r, Eµl) + (ε− Eµl)u̇µl(r, Eµl) +O
(
(ε− Eµl)2

)
, (5.7)

where u̇µl is the energy derivative of uµl. This expansion allows to separate valence states
from core states. It is common to consider only terms up to linear order in the Taylor
expansion of u. With that the basis functions look as follows:

ϕk+G(r) =

{ 1√
Ω

ei(k+G)r, r ∈ IR∑
lm

(
ak+G
µlm uµl(rµ, Eµl) + bk+G

µlm u̇µl(rµ, Eµl)
)
Ylm(r̂µ), r ∈ MT(µ)

,

(5.8)
where the coefficients ak+G

µlm and bk+G
µlm are determined via the boundary conditions between

the interstitial region and the muffin tins. The coefficients are determined such that the
basis functions are continuous and continuously differentiable at the muffin tin boundary.
Since we only go up to linear order in the Taylor expansion of the radial function u, the
LAPW results suffer of a so-called linearization error, which should be kept as minimal
as possible. In some cases the linearization error needs to be reduced by the inclusion
of so-called local orbitals (LOs) into the basis. The local orbitals are only defined in the
muffin tins with the following definition:

ϕLO
k+G(r) =

∑
lm

(
ak+G
µlm uµl(rµ, Eµl) + bk+G

µlm u̇µl(rµ, Eµl) + ck+G
µlm uµl(rµ, E

LO
µl )
)
Ylm(r̂µ),

(5.9)
where ELO

µl is the energy parameter for this local orbital. More information about the LOs
and the energy parameters ELO

µl is presented in the next sections.
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DD̃
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Figure 5.2.: For film calculations within Fleur the space is divided into the muffin tins
(MT) and the interstitial region (IR) within the slab, and additionally two
vacuum regions (Vac.) are defined. For the treatment of the vacuum two
parameters D and D̃ are needed to obtain sufficient flexibility to describe
the exponential decay of the wave functions into the vacuum. Note that no
periodicity along the z-direction is required, therefore in the Fleur code a
“real” two-dimensional periodic system is calculated.

5.2.2. LAPW Basis in Film Calculations

A film can be modeled by imposing periodic boundary conditions within the plane of the
film and perpendicular to the film and choosing a suitable supercell. However, the Jülich
FLAPW code Fleur [66] allows for the calculation of films, without the need of periodic
boundary conditions along the out-of-plane axis of the film. Hence, there is no need to
construct a thick enough vacuum region between periodically repeated film structures to
prevent spurious mirror interactions between these films. Nevertheless, a vacuum region
needs to be defined in which the wave functions are able to exponentially decay to zero.

The Fig. 5.2 displays the three different regions, which are used for the definition of the
LAPW basis in a film geometry. As before the space is divided into muffin tins (MT) and
the interstitial region (IR) within the film, but additionally there is a vacuum region on
the upper and lower side of the film. The parameter D defines the borderline between the
IR and the vacuum, whereas the parameter D̃ > D is used to avoid numerical problems.
The wave function forms a standing wave in between the boundaries defined by D̃ and
thus we avoid numerical difficulties adjusting those standing waves at the edges of the IR.
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The LAPW basis for the film geometry looks as follows:

ϕk||+G||,G⊥(r) =


1√
Ω

ei(k||+G||)r||eiG⊥z, r ∈ IR∑
lm

(
ak+G
µlm uµl(rµ, Eµl) + bk+G

µlm u̇µl(rµ, Eµl)
)
Ylm(r̂µ), r ∈ MT(µ)(

a
k||
G||G⊥

u
k||
G||

(z, Evac) + b
k||
G||G⊥

u̇
k||
G||

(z, Evac)
)

ei(G||+k||)r|| , r ∈ Vac.
,

(5.10)
where G|| and k|| are a 2-dimensional reciprocal lattice vector and the Bloch vectors in
the plane of the film, r|| is the parallel component of r projected on the plane of the film
and G⊥ is an out-of-plane reciprocal lattice vector, defined in terms of D̃. The radial
dependent functions uk||G||

(z) in the vacuum region have to fulfill the one-dimensional
Schrödinger equation(

−1

2

∂2

∂z
+ V0(z) +

1

2
(k|| + G||)

2

)
u
k||
G||

(z, Evac) = Evacu
k||
G||

(z, Evac), (5.11)

in which V0(z) is the planar averaged part of the vacuum potential and Evac is a suitably
chosen vacuum energy parameter.4 The coefficients ak||G||G⊥

and bk||G||G⊥
are both determined

such that the basis functions are continuous and continuously differentiable at the boundary
between the vacuum and the IR. For more details I refer to the reference [118].

5.2.3. Full-Potential Treatment

Early APW and LAPW methods have used a shape-approximated potential V (r) for the
Kohn-Sham equations to simplify the computation. Within the shape-approximation the
potential has been considered constant in the interstitial region and spherical in the muffin
tins. For many systems this approximation works fine, however, in particular systems with
an open structure need a more accurate description of the potential.
Within the Fleur code a full-potential linearized augmented plane-wave (FLAPW)

method is implemented, including non-spherical contributions to the potential inside the
muffin tins and using the warped potential instead of a constant one in the interstitial
region:

V (r) =

{ ∑
G V

G
IReiGr, r ∈ IR∑

lm V
lm

MTYlm(r̂), r ∈ MT . (5.12)

For more details I refer to the reference [119].

5.2.4. Numerical Parameters in the FLAPW Method

Now that I have briefly introduced the LAPW basis, I would like to draw the attention to
the most important numerical parameters. Some of these parameters need to be converged
for each system in the Fleur code, which means the parameters are increased to values,

4More precisely there are two different vacuum regions on the top and the bottom of the film, which
exhibit in general different radial-dependent functions. In the case of a symmetric film, both vacuum
regions are equivalent.
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where the examined physical properties such as the total energy or band gaps are within
the desired accuracy.
First, there is the plane-wave cutoff parameter kmax controlling the maximal (k + G)-

vectors used within the LAPW basis description, and thus it has a crucial influence on the
number of basis functions. On the one hand, more basis functions improve the accuracy of
the description, but a too large kmax might lead to linear dependencies in the basis, which
then causes numerical problems. Typical values for kmax are about 3.5-4.5 a.u.−1 in the
case of “conventional” DFT calculations.
Then, there is the angular momentum cutoff parameter lmax, which determines the

maximum angular momentum quantum number in the sum of eq. (5.8) for the calculation
of the LAPW basis functions in the muffin tins. The cutoff parameter can be rather large
with values around 8-10.5

The calculations should be almost independent of the chosen muffin tin radii RMT,
however there is always a slight dependence on the radii. The muffin tin radii are usually
chosen such that they nearly touch each other, except of the case where a structural
relaxation needs to be done, in which the radii are chosen a bit smaller. A typical radius
of the muffin tin is about 2-3 a.u. A much smaller radius leads to numerical problems,
since we approach the limit, where the clear separation between core and valence states
vanishes.

The FLAPW method is based on equations in the reciprocal space, and thus we also
need to define a proper k-point mesh to guarantee convergence. The k-points enter both
the Kohn-Sham equations in eq. (5.2) as well as the basis functions in eq. (5.8). For
semiconductors about 100 k-points in the full Brillouin zone are in most cases sufficient,
but several orders of magnitude more k-points might be necessary to converge metallic or
magnetic systems.
Finally, let me briefly discuss the inclusion of local orbitals (LOs) into the basis to

improve convergence. The purpose of the LOs is to expand the range of energy in which
the wave functions are accurately described, and thus to decrease the linearization error.
The LOs are defined only in the muffin tin via eq. (5.9). The energy parameters of the
LOs need to be chosen reasonably, and here atomic energy levels are used.
In this thesis I will distinguish two kind of local orbitals, which are semicore LOs and

higher-energy LOs. It might become necessary to include so-called semicore LOs, whenever
the energy of a core state is close to the energy of the valence states [120].6 With other
words that means that the overlap between these core states and the LAPW basis is too
large, since preferably they should be orthogonal to each other. If those (semi-)core states

5The large l-numbers ensure an adequate flexibility of the LAPW basis functions at the muffin tin
borders for fulfilling the boundary conditions. Therefore, it is recommended to satisfy the condition
kmaxRMT = lmax.

6The FLAPW method is an all-electron method, which means both the valence electrons as well as the
core electrons are treated within the presented Kohn-Sham scheme. In the case of the core electrons
even full-relativistic effects are considered for a spherical potential. The LAPW basis is only used
for the description of the valence states and the core states are (approximately) orthogonal on those
LAPW basis functions. However, those core states, which are close in energy to the valence energy
window are called semicore states and might need to be included into the LAPW basis to prevent
numerical problems.
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are not included into the basis, they might lead to “ghost” bands in the electronic structure,
messing up the calculation or leading to wrong results. Another purpose to include LOs is
to improve the description of the unoccupied wave functions by adding additional energy
parameters ELO

µl at higher energies. These higher-energy LOs (HELOs) are usually not
needed for “conventional” DFT calculations, but they might become essential for hybrid
functional calculations or beyond-DFT methods like the GW approximation. In this
thesis only semicore LOs and HELOs are used via eq. (5.9), but there exist several other
definitions for LOs. The interested reader is referred to [121], where more details are
presented.

5.2.5. FLAPW for Hybrids and GW

Hybrid functional calculations and to an even greater extent GW calculations are much
more difficult to converge with respect to the numerical parameters of FLAPW introduced
in subsection 5.2.4. In the GW approximation we need a reasonable description of the
wave functions and eigenenergies from the unoccupied energy spectrum, since they enter
in the determination of the polarization function and of the self energy. Depending on the
system one has to account for a large amount of unoccupied bands to converge the results.
For instance, in the case of ZnO almost 3000 bands have been used for the calculations
and the results were still not fully converged [101, 102], although only a small fraction
of those bands are occupied. A large plane-wave cutoff parameter kmax and an adjusted
lmax might be necessary to allow for a reasonable description of those high-lying energy
states. Additionally, many high-energy local orbitals (HELOs) might be needed to reduce
the linearization error for the unoccupied energy spectrum. In many systems semicore
states need to be included into the basis via local orbitals to converge the results. In
“conventional” DFT calculations this has to be done only for the most important semicore
states to avoid “ghost” bands in the valence window, but in hybrid functional calculations
and GW even semicore states at quite low energies might have an influence on the results.
An important part of my thesis deals with the convergence of the pyrite systems in the
GW approximation, showing the considerable increase in difficulty to converge the results
compared to “conventional” DFT calculations.
But not only the convergence becomes more complicated within hybrid functional and

GW calculations, also conceptually there are some extensions to the LAPW basis. For
both methods the implementation of a mixed product basis is useful [83, 122]. The basis
helps whenever a product of Kohn-Sham wave functions occurs, which is the case in the
evaluation of the non-local potential contributions in the hybrid calculations and for the
determination of the polarization function and the exchange part of the self energy in the
GW approximation. Even so the mixed product basis is conceptually more complicated
than the LAPW basis, it can be reduced to a minimal size basis, which is optimized and
separately defined for the muffin tins and the interstitial region to allow for an efficient
computation. I will not present the expressions for the mixed product basis in this thesis
and advise the reader to the references [83, 99] for more details. But let me mention that
there is also some freedom in creating this mixed product basis and the basis needs to be
converged as well. However, the experience shows that the results do not depend much
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on the choice of the mixed product basis, if it is only chosen reasonably.

5.3. Conclusions

I have briefly discussed the full-potential linearized augmented plane-wave (FLAPW)
method as implemented in the Jülich DFT code Fleur [66]. Within the LAPW basis we
can treat the wave functions in the full potential of the nuclei, and thus no pseudopotentials
need to be used as it is the case in pure plane-wave approaches. The basis is systematically
expandable and accurate results can be obtained for various systems. In the Fleur
code a specifically adapted LAPW basis for film geometries allows to calculate “real” two-
dimensional systems without the necessity to separate periodically repeated film structures
via thick layers of vacuum.

However, the LAPW basis is no “beginner’s basis”, i.e. implementations are rather
non-trivial and the convergence of results depends on a couple of parameters and might
be cumbersome in particular for hybrid functional or GW calculations.
In this chapter I have discussed the basics of FLAPW without focusing too much on

the mathematics. I recommend the references [65, 119, 123] to the readers interested in
more details.
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6.1. Introduction

Photovoltaics probably will become the most important energy production branch in the
future, even if it might take a long time. The earth is radiated with 1.74 · 1017 W by the
sun [4], which is much more than sufficient to cover the world annual energy demand.
The practically unlimited amount of energy produced by the sun allows to solve the energy
problems without running into resource shortages as it is the case for the fossil energy
sources. Hence, it is clear that there is a lot of potential in photovoltaics.

The hardest challenges are to establish a well-structured network to conduct and store
the electric energy, as well as to increase the efficiency and decrease the costs of solar
cells, in order to compete with the energy production costs of fossil energies. For instance,
within the branches of organic photovoltaics a “printing” technique makes the construction
of solar cells very cost efficient, and thus organic photovoltaics is a quite popular research
topic, although the efficiencies of those solar cells are not particularly large and they suffer
of a low stability. However, anorganic materials are still used in the most concepts for
solar cells. But instead of dealing with thick absorption layers, the research focuses more
and more on thin layer systems or nano-structures, by this hoping to significantly reduce
the costs of solar cells. Within the project group, in which I had the possibility to work
on in this thesis, the focus has been on nano-particles of abundant anorganic materials.1

The size of the nano-particles can be tuned in their creation process and this size is
usually closely connected to the size of the band gap, and thus also to the absorption
spectrum. By embedding those nano-particles into a Si-matrix, a high optical absorption
in a wide range of the solar spectrum might be reached by the combination of differently
sized nano-particles. Additionally, there might be also the possibility to use “printing”
techniques to construct future solar cells of nano-particles, and by this significantly reduce
the production costs.
Despite the variegated amount of approaches, the main material of a solar cell is in

any case a semiconductor, in which the type and the size of the band gap has a crucial
influence on the performance of the solar cell. In the studies of this thesis I will focus
mainly on the band gap, whereas surface recombination, defects or even the geometry of
the solar cell are only briefly discussed. In this chapter I start with an explanation of the
basic mechanism of a solar cell, i.e. the light-generated exciton and the separation and

1The project code has been NADNuM 03SF0402A, registered as a BMBF project. The abbreviation
NADNuM stands for “Neue Absorbermaterialien für Dünnschichtsolarzellen mit Nanopartikeln aus
unbegrenzt verfügbaren Materialien”, which is german and means translated “New absorber materials
for thin film solar cells with nanoparticles from infinitely available materials”.
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Figure 6.1.: The basic principle of a solar cell is based on the sequence of the following
steps. The vertical direction in the figure can be interpreted as an energy
axis and from left to right we show the different materials the solar cell is
made: the p- and n-doped semiconducting layers and the undoped intrinsic (i)
one. The location of the Fermi energy εF is indicated by the dashed line. (a)
A photon is absorbed in the intrinsic semiconducting layer. (b) An electron
from the valence band (VBM - valence band maximum) is excited into the
conduction bands (CBM - conduction band minimum). The remaining hole in
the valence band is coupled to the electron. Both together form a so-called
exciton. (c) An internal electric field caused by the space-charges in the p-
and n-doped semiconducting layers separates the charge carriers.

collection of the single charges.
To evaluate the performance of a solar cell many quantities are of interest. For instance,

a very basic quantity is the efficiency η comprising some other quantities like the open-
circuit voltage, Voc, the short-circuit current, Isc, or the fill-factor, FF . In this chapter I
will briefly discuss all those quantities and some effects which might have a considerable
influence on those quantities. Finally, a brief overview over some existing solar cell types is
presented to get a feeling for typical values of the solar cell parameters.

6.2. Fundamental Mechanism of a Solar Cell

First of all, I will discuss the basic mechanism in a solar cell, which is based on quantum
mechanical effects. That explains why density-functional theory (DFT) and beyond-DFT
approaches are crucial to describe the physics in solar cells. The basic mechanism is
depicted in Fig. 6.1, which I will discuss bit by bit in the following.
A semiconducting material with a band gap εgap is used as absorber material. The valence

states are fully occupied by electrons, whereas the conduction bands are unoccupied.2 An
impinging light quantum of a specific energy �ω might excite an electron from the valence
bands into the conduction bands, leaving a positively charged hole in the valence bands.
The probability of this electron excitation depends on various conditions, e.g. the size and

2Of course thermal energy leads to a very small occupation of the conduction states with electrons, but
this will be neglected in the following.
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type of the energy transition compared to the energy of the photon or the thickness of the
absorber layer. The energy of the photon has to be at least as large as the band gap size
to excite an electron, but a photon with a considerably larger energy than the energy of
visible light quantums is less probable to scatter with an electron of the semiconductor. If a
photon is absorbed, the excited electron and the remaining hole are (weakly) coupled, and
the thus formed quasiparticle is the so-called exciton. Not every absorbed photon yields
such a “stable” exciton, since the electron and the hole might recombine in a very short
time leaving no free charge carriers in the system. On the other hand, in some systems
multiple excitons are generated, i.e. a single photon excites more than one electron or an
excited electron excites other electrons, possibly leading to many excitons.

After having obtained an exciton, the next step is to separate the majority and minority
charge carriers by an electric field in the material. Since we want to generate an electrical
current without applying an external electrical field, the solar cell should exhibit an own
internal electrical field. A p-n junction (diode) creates such an internal electrical field. How
is this internal field created? - The p-doped and n-doped semiconducting material are both
electrical neutral, but the majority charge carriers are holes in the first case and electrons
in the latter.3 At the interface of this junction electrons and holes recombine due to the
concentration gradient of the charge carriers, leaving a depletion region. In this depletion
region the p-doped area becomes negatively charged, whereas the n-doped area becomes
positively charged, and thus an internal electric field is created by those space-charge areas,
which acts against the charge carrier diffusion. In thermodynamic equilibrium the electric
field is large enough to stop the charge carrier diffusion. If new charge carriers are now
created in the depletion region, the electron will flow to the n-doped and the hole to the
p-doped side of the p-n junction.4 An intrinsic semiconducting layer between the p-doped
and n-doped semiconductor materials does not change this basic concept. The intrinsic
layer acts like a capacitor elongating the electric field generated by the p-n-junction, and
thus increasing the volume in which newly generated excitons can be separated into free
charge carriers by the internal electric field. Hence, most solar cell concepts are based on
a p-i-n structure of a semiconducting material, where the i stands for the intrinsic layer
sandwiched by the p-doped and n-doped layer.
Let me summarize the most important steps of the physics in a solar cell with respect

to Fig. 6.1:

(a) An impinging photon is absorbed by an electron in the valence states inside the intrinsic
semiconducting layer.

(b) An exciton is created, which is a (weakly) coupled electron in the conduction band
and a hole in the valence band.

3As an example consider Si in one case doped with B and in another case with P atoms. In the first case
the system lacks of electrons compared to the pure Si material, whereas in the latter case it exhibits a
surplus of electrons. Note that both systems are still charge neutral. Since there will be holes in the
valence bands in the first case, the majority charge carrier are holes, whereas in the P-doped Si the
surplus of electrons is located in donator levels nearby the conduction band edge, leading to electrons
as majority charge carriers.

4This direction of flow seems to be against the first intuition, but the formation of the depletion region
explains this behavior (cf. Fig. 6.1).
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Figure 6.2.: A schematic figure of a typical p-i-n thin-film solar cell, consisting of the
intrinsic absorber layer i sandwiched by a p- and n-doped semiconducting layer.
The two buffer layers are usually needed to improve the growth conditions
and to increase the performance of the solar cell. On the side where the light
enters, a transparent conductive oxide (TCO) collects the charges, whereas a
nontransparent metallic contact is used on the rear side.

(c) An internal electric field caused by the space-charges in the depletion region of the
p- and n-doped layers separates the charge carriers, i.e. the electron and hole. The
electron travels to the n-doped and the hole to the p-doped site.

(d) The majority charge carrier is collected at the contact causing a photocurrent. This
last step is not visualized in Fig. 6.1.

This sequence takes place in an ideal solar cell, but in a real material in each step
something can go wrong, and thus a much smaller or no photocurrent can occur. In the
next section I will talk in detail about some possible causes of a small photocurrent.

I would like to finish this section by discussing a typical buildup of a p-i-n thin-film
solar cell as it is displayed in Fig. 6.2. The most essential part of the solar cell is the
absorber layer, which is the intrinsic semiconductor layer. This layer is sandwiched by a
p- and n-doped layer to create an external electric field. Instead of growing the contact
layers directly on top of the p- and n-doped layer, in many cases buffer layers are used
to facilitate the growth process and to decrease stress-induced degradation or transient
effects. On top of the buffer layer is located a transparent and conductive layer, e.g. a
transparent conductive oxide like indium-tin-oxide, for both to allow the light to pass
through and to collect charge carriers. On the backside a non-transparent contact layer is
deposited to reflect the light and to collect the charge carriers. The interfaces between
the layers look very smooth in the figure, but in reality those can be quite rough. This can
be of disadvantage, since charge carriers could recombine at surface defects, but there
are also approaches to use the rough surfaces for light-trapping and by this increasing the
probability to absorb the photons in the material [124].
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Figure6.3.:TheI-Vcharacteristicofasolarcellunderillumination(redcurve)and
underdarkconditions(blackcurve).ThelosscurrentIloss,theshort-circuit
currentIscandtheopen-circuitvoltageVocarealsoindicatedinthefigure.
ThehatchedboxindicatesthepoweroutputPout,whichisthemaximally
obtainablepowerImpVmpofthecell.

6.3.ImportantQuantitiesofaSolarCell

InthissectionIwilltalkaboutthemostimportantquantitiesofasolarcellandIwill
pointouttherequirementsforanidealsolarcellmaterial.Atthebeginningoftheprocess
depictedinFig.6.1istheabsorptionofaphoton,andthusmaterialswithahighoptical
absorptionforawiderangeofwavelengthsarepreferred.Formaterialswithan“average”
opticalabsorptionthereisthepossibilitytoincreasethethicknessoftheabsorptionlayers
toincreasetheprobabilitytoabsorbthephotons.However,inthickabsorptionlayersthe
collectionofthechargecarriersmightbemoreofaproblemandanidealsolarcellshould
consistofaminimumamountofabsorbermaterialtodecreasetheproductioncosts.The
opticalabsorptiondelicatelydependsonthetypeandthesizeofthetransition,e.g.usually
theabsorptionofaphotonfordirectbandtransitionsaremuchmoreprobabletooccur
comparedtoindirecttransitions.
Toseparatethechargecarriersandobtainaphotocurrent,aninternalorexternalelectric
fieldisneeded.Thecurrent-voltagecharacteristicofatypicalsolarcellisdisplayedin
Fig.6.3.Underdarkconditionsthesolarcellbehaveslikeanormalp-njunction,which
meansinonedirectiontheelectriccurrentIisblocked,whereastheotherdirectionshows
(initially)anexponentialincreasewiththepotentialV.InequationstheI-Vcharacteristic
ofasolarcellunderdarkconditionslooksasfollows:

I(V)=Iloss(e
eV
kBT −1), (6.1)

wherekBTisthethermalenergyfortemperatureTandIlossisthelosscurrentcausedby

55
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imperfections in the p-n junction. Not shown in the figure is the breakthrough area, which
occurs for large negative voltages leading to an exponentially decreasing negative current.
An illuminated solar cell behaves to a good approximation like a p-n junction in which an
additional light-induced current is present,

I(V ) = Iloss(e
eV

kBT − 1)− Isc. (6.2)

Here, Isc is the short-circuit current, which is the electric current in the solar cell under
short-circuit conditions, i.e. V = 0. The light-induced current and the short-circuit current
are approximately the same for good solar cells. Another important quantity for the solar
cell, which can be extracted from the I-V characteristic is the open-circuit voltage Voc,
which is the required voltage to exactly compensate the light-induced current, i.e. I = 0.
In an ideal solar cell without recombination losses reducing the photocurrent, the negative
value of the open-circuit voltage corresponds to the voltage produced by the internal
electric field caused by the space charges in the p-n junction. The open-circuit voltage
can be maximally as large as εgap/e, since a larger voltage will promote electrons from
the valence band directly into the conduction band, and thus over-compensating the
photocurrent. A too small short-circuit current or open-circuit voltage can have various
reasons. Although the solar cell might absorb a high amount of the incident light and a
sufficiently large number of excitons is created, the majority and minority charge carriers
might recombine at surfaces, interfaces or defects. A calculation of the electronic structure
shows surface- or defect-states within the band gap, which might act as recombination
centers for the charge carriers.
Another quantity classifying the amount of collected charge carriers with respect to

the number of absorbed photons is the (internal) quantum efficiency. It is common to
display it in percent. For instance, a quantum efficiency of 50% means that half of the
absorbed photons are transformed into charge carriers, which could be collected at the
contacts. For the ideal solar cell material the absorbed photons should create as many
excitons as possible, and thus in the case of multi-exciton generation quantum efficiencies
above 100% might be achieved.

Finally, there is the conversion efficiency η, which is often used as “the” quality criterion
for a solar cell. It is the ratio between the power output of the solar cell and the power of
the incident light, thus

η =
Pout

Pin

=
VocIscFF

Pin

=
VmpImp

Pin

, (6.3)

where FF is the fill-factor. The fill-factor is the ratio between the maximum obtainable
power of the solar cell and the product of Isc and Voc:

FF =
ImpVmp

IscVoc

, (6.4)

where the index mp stands for maximum power. If we only consider the subspace of
positive voltages V and of negative photocurrents of Fig. 6.3, the short-circuit current is
the maximum possible current of the solar cell, whereas the open-circuit voltage is the

56



6.4. A Brief Overview of Existing Solar Cells

η (%) Voc (V) Jsc (mA/cm2) FF (%) εgap (eV) Ref.
c-Si 25.0 0.71 42.7 82.8 1.11 [125, 126]
a-Si 10.1 0.89 16.8 67.8 1.75 [125, 127]

CIGS (cell) 19.8 0.72 34.9 79.2 1.1-1.7e [125, 128]
CdTe (cell) 19.6 0.86 28.6 80.0 1.44 [125, 126]

GaAs (thin film) 28.8 1.12 29.7 86.5 1.43 [125, 126]
FeS2 3 0.2 40 - 0.95 [13]

Table 6.1.: The top-values for the conversion efficiency η, the open-circuit voltage Voc,
the short-circuit current density Jsc, the fill-factor FF and the band gap
are displayed for a couple of solar cells. Except of the iron pyrite cell, all
other cells have been already heavily optimized in research and most of them
are even commercially available (but then with lower efficiencies). The solar
cell parameters have been extracted from the references indicated in the last
column. The efficiency, the open-circuit voltage, the short-circuit current
density and the fill-factor have been measured under 25 ◦C and AM 1.5
conditions, i.e. 1000 W/m2.

largest possible voltage. At both points in the I-V diagram the corresponding power
output of the solar cell is zero and in between it reaches a maximum. The fill-factor can be
interpreted as the quantity classifying the possible maximum power output of the solar cell.
For given Isc and Voc the more “rectangular” the I-V curve is the larger is this fill-factor.
The Shockley-Queisser limit [7] describes the maximally possible conversion efficiency

of a (single-stack) solar cell depending on the band gap of the absorber material. For that
limit radiative recombination and spectral losses have been considered, but the influence of
defects or surfaces are not included. Due to the characteristics of the solar spectrum the
largest conversion efficiencies are expected for materials with a band gap between 1-1.5 eV,
since materials with a larger band gap exhibit large spectral losses, whereas materials with
a smaller band gap suffer of radiative recombination. The Shockley-Queisser limit can be
used to search for specific semiconductors, which might provide a reasonable efficiency if
used in a solar cell. However, it can be only seen as a first check and a further detailed
analysis of those materials is indispensable.

6.4. A Brief Overview of Existing Solar Cells

To get a feeling for the typical sizes of the quantities in a solar cell, some data is collected
in the table 6.1. There the conversion efficiency η, the open-circuit voltage Voc, the short-
circuit current density Jsc, the fill-factor FF and the band gap are shown for crystalline
silicon (c-Si), amorphous silicon (a-Si), a copper-indium-gallium-(di)selenide (CIGS) cell,
CdTe, a GaAs thin film and finally iron pyrite, which I will focus on in this thesis. All
these values are up to date the best values measured for a solar cell consisting of those

eThe band gap depends on the In and Ga content in the cell.
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materials [125]. For the band gaps in the table the reference [126] and the references
within have been used. In the case of iron pyrite, the data has been recorded more than
20 years ago [13] and no significant optimization has been achieved since. Partly this can
be explained by a low interest in the community to investigate this system, which changed
just within the last few years.
First of all, it is noticeable that the size of the band gaps are all more or less in the

energetic region, which is predicted to be optimal within the Shockley-Queisser limit [7].
Only iron pyrite has a bit smaller band gap with 0.95 eV and a-Si exhibits a larger band
gap with 1.7 eV. The best efficiencies for crystalline Si solar cells are not far off from the
maximum possible value of about 30% predicted by the Shockley-Queisser limit. For the
other systems there is still a lot of room for improvement. The open-circuit voltage is
in most cases considerably smaller than the size of the band gap, but a value of 0.7 V
or more is usually sufficient to guarantee a good charge carrier separation. Optimally,
short-circuit current densities of about 40-60 mA/cm2 can be achieved. Although iron
pyrite exhibits a small open-circuit voltage, the short-circuit current is large enough. For
the fill-factors values of 80-90% are desirable.

The optical absorption coefficient and the (internal) quantum efficiency are not displayed
in the table, since these two quantities depend delicately on the wavelength of the incident
light. Typically, an average optical absorption coefficient of 105-106 cm−1 for the visible
spectrum of light is a rather large value. Then, already very thin absorption layers are able
to absorb most of the photons, usually also leading to large internal quantum efficiencies.
The absorption coefficient depends also on the type of transition, which usually leads
to larger values for direct (optical) transitions, whereas indirect transitions exhibit much
smaller values. For instance, due to the indirect band gap the optical absorption in c-Si is
“only” 103-104 cm−1, and thus thick absorption layers need to be used for this solar cells.
In CdTe, GaAs and FeS2 the optical absorption is 1-2 orders of magnitude larger. For the
internal quantum efficiency values around 80-90% are large enough for a good solar cell
material.

6.5. Conclusions

To understand and predict the suitability of materials for photovoltaics, electronic structure
calculations need to be conducted, since the essential physics in a solar cell are based
on electronic excitations. An impinging photon is absorbed and an electron is excited
from the valence bands into the conduction bands, leaving a positively charged hole. The
electron and the hole are coupled and an internal electric field, which is usually caused
by the space charges of the p-n junction, has to separate the charge carriers. Those are
finally collected at the contacts and a photo current flows.
To evaluate the performance of solar cells a couple of quantities, e.g. the conversion

efficiency or the open-circuit voltage are used. I have introduced them in this chapter
and typical values have been presented for a couple of solar cells. Additionally, I briefly
discussed effects, which might lower the performance of solar cells. For the interested
reader, I recommend the references [126, 129] for more details.
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7.1. Introduction

Iron pyrite or FeS2 pyrite is a quite abundant mineral in the earth’s crust and most people
know it by the name “fool’s gold”. The origin of this name comes from the shiny gloss
of the pyrite crystal surface, reminding of gold. The degree of hardness can be used
to distinguish gold nuggets from pyrite crystals, since pyrite is much harder than gold.
Iron pyrite is a semiconductor with a measured band gap of 0.95 eV and a large optical
absorption of about 6 · 105 cm−1 for visible light [13]. Hence, it is not surprising that
iron pyrite has drawn attention as possible promising photovoltaic material. Solar cell
prototypes using FeS2 pyrite as optical absorber yield large quantum efficiencies of above
90 % and sufficiently high photocurrents of 40 mA/cm2, but they suffer of a too low
open-circuit voltage of only 200 mV leading to conversion efficiencies smaller than 3 %.
There are plenty of possible explanations for the low open-circuit voltage, which I have
already addressed in the introduction of this thesis (see chapter 1).

To understand the origin of the low open-circuit voltage, electronic structure calculations
within density-functional theory (DFT) can be of great help. First, the electronic structure
of the “simple” bulk system should be understood, before approaching more realistic
scenarios like surfaces or interfaces. This chapter is dedicated to this topic. There are
already many publications focusing on the DFT results of iron pyrite with which I will
compare my results, and thus, this chapter can be also seen as a benchmark of my results.

I will start by introducing the lattice structure of iron pyrite bulk followed by a detailed
discussion of its electronic structure within “conventional” DFT. The strong connection
between the geometrical characteristics and the electronic structure will be exposed,
including results of the structural optimization. Finally, the dependence of the results on
different exchange-correlation functionals and methods, e.g. LDA, GGA-PBE, DFT+U ,
hybrid functionals, within the DFT framework is examined.

Parts of the results presented in this chapter are already published in the reference [25].

7.2. The Pyrite Structure

Iron pyrite is only one compound crystallizing in the pyrite structure. The whole row of
transition-metal dichalcogenides MS2 with M=Fe, Co, Ni, Cu and Zn crystallize in the
pyrite structure and they exhibit a broad spectrum of physical properties ranging from
“normal” semiconductors, ferromagnets to Mott insulators [46]. This variety is directly
connected to the electronic occupation and the geometry of the pyrite structure, which is
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7. Iron Pyrite Bulk within DFT

Figure 7.1.: The iron pyrite structure with the S atoms as yellow spheres and the Fe atoms
as red spheres. The lattice parameter a controls the size of the cubic unit
cell and the Wyckoff parameter u determines the position of the S atoms
within the cell. In the right panel the (almost) octahedral and tetrahedral
surrounding of the Fe and S atoms are displayed. In the tetrahedrons, the
characteristic S dimers are clearly visible. This figure has been created with
the help of the program VESTA [130].

displayed in Fig. 7.1. In the next section I will in detail discuss the connection between the
geometrical structure and the electronic structure.
The pyrite unit cell is simple cubic with a lattice parameter a and it consists of 4 Fe

atoms and 8 S atoms, where the S atoms form characteristic S dimers. The position of the
S atoms in the unit cell are described by the Wyckoff parameter u. The pyrite structure
can be seen as NaCl structure with the Fe atoms located at the Na positions and the
centers of the S dimers occupying the Cl positions. The S dimers are orientated along
the space diagonals. The S atoms are almost octahedrally arranged around the Fe atoms,
whereas each S atom is tetrahedrally surrounded by 3 Fe atoms and one additional S atom
with which it forms the S dimer. The distance between the two S atoms is smaller than
the nearest S-Fe distance in most pyrite systems, which is a consequence of the strong
covalent bond between those S atoms. Although the octahedrons and tetrahedrons are
slightly distorted1, they lead to a good approximation to the common crystal-field splitting
of the d states into t2g and eg states, which has a crucial influence on the electronic
structure.
The positions of the basis atoms are as follows, where Fei with i = 1, .., 4 and Sj with

1A perfect octahedral and tetrahedral coordination exists for a Wyckoff parameter of u = 0.25.

60



7.3. Computational Details

j = 1, .., 8 denote the Fe and S atoms in the unit cell:

BFe1 = (0, 0, 0), BFe2 = (0, 1
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, 1

2
),

BFe3 = (1
2
, 0, 1

2
), BFe4 = (1

2
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(7.1)

The distance between the S atoms in a S dimer, dS−S, is directly controlled by the Wyckoff
parameter u. In Fig. 7.1 it becomes clear that the relation is as follows:

dS−S =
√

3a(1− 2u). (7.2)

The distance of the S dimers has a strong influence on the electronic structure, and thus
also the Wyckoff parameter has a strong influence, as it will be discussed in the next
sections.
The experimentally determined lattice parameter taken from reference [51] with a =

5.418 Å and a Wyckoff parameter of u = 0.385 (both measured at room temperature)
are used in several calculations of this thesis for the iron pyrite structure, and they are
from now on referred to as the structural parameters taken from experiment. The lattice
parameters and Wyckoff parameters of natural and synthetic iron pyrite crystals show
variations of about 0.5 %, probably due to defects. The structural optimization presented
in another section of this chapter leads to an additional set of structural parameters,
denoted as the optimized structural parameters in the thesis.
The iron pyrite structure belongs to the Pa3̄ group, and thus exhibits 24 symmetries,

including the inversion-symmetry, which significantly simplifies and speeds up calculations.
However, a total number of 12 atoms in the unit cell poses a challenge for DFT calculations
using more sophisticated schemes like hybrid functionals.

7.3. Computational Details

We used the Fleur code [66] to perform the calculations, which is based on the full-
potential linearized augmented plane-wave (FLAPW) method within the framework of
density-functional theory (DFT). I refer the interested reader to the theory chapters about
DFT and FLAPW in this thesis (chapters 2 and 5) and the references within for more details
on the methods. The Fleur code has a couple of computational parameters discussed in
chapter 5, which need to be carefully converged. For our purposes sufficiently converged
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are a plane-wave cutoff parameter kmax = 4.0 a.u.−1, an angular momentum cutoff of
lmax = 8 for both the Fe and the S atoms, and muffin tin radii with RFe

MT = 2.23 a.u. and
RS

MT = 1.98 a.u. A rather dense k-mesh of 10×10×10 k-points in the full Brillouin zone
via Monkhorst-Pack has been chosen to guarantee convergence in all cases, although I am
quite sure a less dense k-mesh would have worked too. Since all 24 symmetries of the
pyrite structure are exploited, the calculations can be restricted to an irreducible wedge
of the Brillouin zone only containing 45 k-points. In the appendix D a more detailed
convergence analysis of the DFT calculations for iron pyrite is presented, in which my
choice of parameters is justified.

The results of the “conventional” DFT calculations are rather insensitive to the inclusion
of local orbitals into the LAPW basis. The energetically highest-lying core states are the Fe
3s and 3p states, which are located about −2.8 Htr and −1.6 Htr below the valence states.
These semicore states do not lead to “ghost” bands in the DFT description and an inclusion
as LOs into the LAPW basis has no significant influence. The inclusion of additional
higher-energy local orbitals leads also to no significant change of the “conventional” DFT
results, and thus no local orbitals are included in the calculations.
The DFT+U calculations of iron pyrite have been performed based on the GGA-

PBE functional. The effective Hubbard-U has been calculated to an optimal value of
Ueff = 2.4 eV using constrained RPA within the Spex code [85]. More precisely the
Hubbard-U is 3.3 eV and the Hund-exchange parameter J = 0.9 eV, adding up to the
mentioned effective Hubbard-U . The U parameter has been applied to the Fe 3d states.
For the double counting the around mean-field limit has been used.

For the hybrid functional calculations the same parameter set has been used, except that
the k-points needed to be reduced to a Γ-centered 4×4×4 k-mesh. Since the calculations
also demand for a number of unoccupied electronic bands, I have included 800 total bands.
Since hybrid functional calculations are more sensitive to the inclusion of LOs, I have
tested the effect of the inclusion of the Fe 3s and 3p semi-core states as LOs into the
FLAPW basis and no considerable change in the results was observable. The same is true
for the inclusion of high-energy LOs.
Iron pyrite is non-magnetic in experiment and also the calculations indicate a stable

non-magnetic ground state. As a test I have started a magnetic calculation of iron pyrite
with finite magnetic moments of about 2 µB, which finally converged to a non-magnetic
calculation. Therefore, all following calculations of iron pyrite bulk have been treated
non-magnetically. Additionally, no spin-orbit coupling (SOC) has been considered, since
Fe and S are quite light elements, and thus the size of the band gap of iron pyrite changes
less than 0.01 eV on inclusion of SOC. For the structural relaxation and the determination
of the atomic forces a Broyden-Fletcher-Goldfarb-Shanno algorithm has been exploited
and the forces have been converged to the order 10−5 Htr/a.u.
The optical absorption of iron pyrite has been calculated using the Spex code.2 A

detailed discussion about the theoretical basics of the calculation of the (orbital-resolved)

2Although I use the Spex code also for the GW calculations, please note that for the calculation of
the optical absorption we used in this chapter only the Kohn-Sham energies and Kohn-Sham wave
functions, and thus we deal only with the optical absorption calculated within DFT.
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Figure 7.2.: The electronic band structure of iron pyrite for the structural parameters
taken from experiment using the GGA-PBE functional (left panel) and the
corresponding density of states (right panel) decomposed into S 3s- (blue
dashed), S 3p- (black pointed), and Fe 3d-orbital contributions (red solid).
To improve the visibility the LDOS of the S 3s- and S 3p-orbital contributions
are enhanced by a factor of 4. The Fermi energy εF is located at 0. The
high-symmetry points of the k-path are denoted according to Bradley and
Cracknell [131], where X ′ is equivalent to X.

optical absorption is presented in the appendix B. A k-mesh of 20×20×20 k-points and an
artificial broadening with the Lorentzian functions with 50 meV full-width at half-maximum
(FWHM) has been used. For the determination of the orbital-resolved optical absorption
see appendix B.

7.4. First Glimpse on the Electronic Structure of
Iron Pyrite

The electronic band structure and the corresponding density of states (DOS) of iron
pyrite calculated within the GGA-PBE functional are displayed in Fig. 7.2. The DOS is
decomposed into the most important orbital contributions in the observed energy range,
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Figure 7.3.: The orbital-resolved band structure of iron pyrite for the structural parameters
taken from experiment (left panel, a = 5.418 Å and u = 0.385) and for the
optimized structural parameters (right panel, a = 5.403 Å and u = 0.383)
obtained within GGA-PBE. The Fe 3d orbital contributions are indicated in
red, whereas the S 3p character is displayed in black color. The size of the
points is connected to the content of the corresponding orbital character. The
high-symmetry k points of the k-path are denoted according to Bradley and
Cracknell [131] (X ′ equivalent to X). The direct band transition at Γ and
the smallest indirect transition, i.e. the fundamental band gap, are indicated
as blue arrows.

which are the S 3s-, the S 3p-, and the Fe 3d-orbital contributions. The LDOS of the
S contributions are enhanced by a factor of 4 to improve the visibility. The electronic
structure can be simply analyzed according to the geometry of the pyrite structure. On
the one hand, there is the strong covalent bond of the S dimers, and then for the Fe
atoms there is the crystal field splitting into t2g- and eg states caused by the octahedral
symmetry of the structure.3

The covalent bond of the S dimers leads to bonding and anti-bonding states of the S
3s- and S 3p-orbitals. The S ssσ and ssσ∗ states are located at about −15 and −12 eV,
and thus are split by about 3 eV. These states are quite separated from all other states
only weakly hybridizing with the rest, and thus do not play a significant role for the
states around the Fermi energy, which are essential for the band gap. The bonding and

3The pyrite structure exhibits only approximately an octahedral symmetry (see Fig. 7.1), leading to a bit
more complicated crystal field splitting than assumed. However, for the purpose of a first understanding
of the electronic structure the assumption of a perfect octahedral symmetry is adequate. Additionally,
note that the splitting into t2g and eg states relate to the principal axes of the octahedrons in the
crystal and not the global z axis.
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anti-bonding S 3p states ppσ, ppπ, ppπ∗ and ppσ∗ range from −7 to 5 eV and hybridize
strongly with the Fe 3d states depending on their energy. The closer these states are to
the Fermi energy the more they hybridize with the Fe 3d states. From −7 to −2 eV the S
ppσ, ppπ and ppπ∗ are the major contributions to the DOS exhibiting more hybridization
with the Fe 3d t2g states for the larger energies. From −2 eV to the Fermi energy the t2g
states are quite flat and localized, and thus they lead to large contributions in the DOS
dominating this energy range. These states hybridize weakly with the S 3p states.

In the conduction bands ranging from about 0.6 to 4 eV the Fe 3d eg states dominate
the lower energies, whereas the S ppσ∗ contributions become more important for larger
energies. The hybridization between the eg and the S ppσ∗ states is quite strong for the
whole energy range. For energies larger than 5 eV the orbital contributions from S 4s and
Fe 4p states gain influence, which is not shown in the figure. In the appendix E the orbital
contributions are discussed with the help of charge density isosurfaces, confirming the
above statements.

The density of states in Fig. 7.2 indicates that the band edges around the Fermi energy
are mostly dominated by Fe 3d states, but a closer look into the orbital contributions
at the conduction band edge reveals that there are significant contributions from S 3p
states. The orbital-resolved band structure in Fig. 7.3 allows more insight into the orbital
contributions at the Fermi edge. The valence states at the Fermi edge, and thus also the
valence band maximum (VBM) are quite localized and have mostly Fe 3d orbital character.
The highest occupied state at Γ is even of pure Fe 3d character. The conduction bands
are also dominated by Fe 3d states, except of the lowest unoccupied band around Γ, which
exhibits an increasing S 3p orbital contribution the closer it gets to Γ. The conduction
band minimum (CBM) is located at Γ, and it is of pure S 3p orbital character. But also
in the vicinity of Γ the orbital character of the band is very pure. This single S 3p rich
band appears at lower energies than the Fe 3d states in the conduction band due to the
larger bandwidth of the ppσ∗ compared to the quite localized d states. Interestingly, it
becomes only evident around Γ at the band-bottom. In difference to the localized Fe 3d
states this S 3p band is delocalized, leading to a quite remarkable type of transition in the
fundamental band gap in iron pyrite. It is predicted to be 0.62 eV within PBE, and it is
defined between a rather localized band of Fe 3d character and a delocalized band at Γ of
S 3p character. Hence, not only the orbital character of the VBM and CBM are different,
but they are also located on different atoms and the corresponding bands exhibit a very
different localization. This has considerable consequences on the optical absorption of iron
pyrite as it is discussed in section 7.7. Due to the flatness of the valence bands, the direct
transition at Γ is only slightly larger in energy with 0.66 eV than the fundamental band
gap, and thus the direct transition can also be used to analyze the dependence of the
band gap on the structural parameters or the chosen exchange-correlation functional.
The Fig. 7.4 shows a charge density slice for the energies close to the VBM and CBM

at Γ projected on the plane spanned by the (111) and (11̄0) direction. It indicates that
the relevant contributions to the states arise from Fe dz2 and S ppσ∗ orbitals.4 The Fe dz2

4Note that the spherical harmonics are expressed with respect to the (111) direction as global quantization
axis. The rotational behavior of the spherical harmonics is determined by the Wigner matrices.
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Figure 7.4.: The projected charge density of FeS2 pyrite onto the plane spanned by the
directions (111) and (11̄0) is presented for an energy range only containing the
highest occupied band and the lowest unoccupied band at Γ. The RGB (Red-
Green-Blue) color code follows a logarithmic scale with red (blue) indicating
minimal (maximal) charge density contribution. The black box contains two
S atoms forming the S dimer orientated along the (111) direction and the red
box enframes an Fe atoms along the same direction. The figure on the right
side visualizes the position of the projection plane in the iron pyrite structure.

orbital character comes from the valence band, whereas the S ppσ∗ character arises in the
conduction states. The charge density is quite localized to the Fe and S atom positions,
whereas it shows less structure between those atoms. In particular no sp3d2 hybridization
can be observed, and thus a more ionic bonding between the Fe and S atoms is present.

The calculated electronic structure of iron pyrite is in excellent agreement with the most
recent publications, e.g. [29, 30]. The band gap size of 0.62 eV within GGA-PBE is about
35% smaller than the experimentally measured value of 0.95 eV. This underestimation is
quite typical also for some simple semiconductors. However, in many simple semiconductors
the band gap underestimation is considerably larger, and thus it is still surprising how well
the GGA-PBE result agrees with the experimental band gap size regarding the absolute
values.
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7.5. Structural Optimization of Iron Pyrite and
Dependence on the Structural Parameters

In particular for later examinations of the iron pyrite surfaces, the bulk structure has been
structurally optimized. First the optimized lattice constant a has been calculated by energy
minimization, and then a first guess for the Wyckoff parameter u has been determined via
energy minimization using the optimized lattice constant. In the energy minimization the
optimized structure parameters can be extracted via parabolic fits, which are presented
in the Fig. 7.5.5 The optimized lattice constant is determined to about 5.40 Å within
the PBE functional,6 which is in nice agreement with the experimentally measured lattice
constant of 5.418 Å [51].
With the first guess for the optimized Wyckoff parameter and the optimized lattice

constant a the iron pyrite structure has been structurally relaxed, which leads to an
optimized value of u = 0.3826 for the Wyckoff parameter (experimental value: u = 0.385).
The corresponding forces have been already quite small using the first guess Wyckoff
parameter, explaining the small difference between the first guess u and the relaxed value.
These parameters lead to a distance between the S atoms in the S dimer of 2.16 Å for the
structure parameters from experiment and 2.20 Å for the optimized structural parameters.
In the right panel of Fig. 7.3 the electronic band structure of structurally optimized

iron pyrite is displayed. Despite a difference in the size of the band gap, which is smaller
(0.4 eV) than the band gap for the structural parameters taken from experiment (0.6 eV),
the band structure shows similar characteristics regarding the orbital contributions. But
still it is astonishing that a relative difference of less than 1% in the structural parameters
leads to a change in the band gap size of about 50%. That is owed less to the change
in the lattice constant a, but much more to the difference in the Wyckoff parameter. A
change of a few percent in the lattice constant has almost no influence on the electronic
structure around the Fermi energy, since not only the distance between the S atoms in the
S dimer is altered, but also the distance between the Fe atoms and the Fe-S bondings
are altered leading to insignificantly small relative shifts between the Fe 3d and S 3p rich
bands. On the other hand, the Wyckoff parameter mostly controls the distance between
the S atoms in the S dimer, which has a crucial influence on the bonding anti-bonding
splitting between the S 3p states, and thus alters the relative position of the Fe 3d and S
3p states.

This can be observed in Fig. 7.6, where the orbital-resolved band structure of iron pyrite
is displayed for four different Wyckoff parameters. The smaller the Wyckoff parameter is
the larger is the distance of the S atoms in the S dimer, and thus the smaller is the splitting
between the bonding and anti-bonding S 3p states leading to a smaller fundamental band

5In addition to the quite straight-forward way to determine the optimized lattice constant as presented
in this thesis, I tried also the Birch-Murnaghan equation of state for the optimization, revealing no
significant changes.

6To be more precise, the optimized lattice constant is 5.403 Å within GGA, however I found that the
lattice constant has not such a significant influence on the electronic structure and the band gap
of iron pyrite, and thus I calculated the optimized lattice constants of iron pyrite within all other
functionals only up to two digits behind the comma.
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Figure 7.5.: The optimized lattice constant aO (left panel) and the first guess for the
optimized Wyckoff parameter uO (right panel) has been calculated via en-
ergy minimization using a parabolic fit. For the determination of the first
guess Wyckoff parameter the optimized lattice constant has been used. The
structural parameters have been determined within the GGA-PBE (black),
the LDA and the HSE06 (red) functional. The dashed lines indicate the
structural parameters taken from experiment of 5.418 Å and u = 0.385. We
used the Harris-Foulkes approximation for the HSE06 calculations to save
computational time [132, 133].

gap. For too small Wyckoff parameters this can even lead to metallicity in iron pyrite
as it can be observed in the case of u = 0.375. There are also reports in the literature
predicting a metallic electronic structure, since the structural optimization led to small
Wyckoff parameters [49]. The strong connection between the Wyckoff parameter and the
band gap has been already examined by Eyert et al. [35]. Since natural crystals of iron
pyrite show slight deviations in the structural parameters [51], most probably caused by
defects, some deviations in the band gap are expected. The large spread of the reported
band gaps in the literature (cf. [34]) might be at least partially attributed to this fact.

Let me compare the results to literature on the optimized structural parameters of iron
pyrite. Zeng et al. [49] report a lattice constant of a = 5.455 Å and a Wyckoff parameter
u = 0.379 after structural relaxation using the GGA-PBE functional leading to an almost
metallic electronic band structure. In a quite recent publication of Sun et al. [29] an
optimized lattice constant of a = 5.403 Å is reported, leading to a band gap size of 0.39 eV
using the GGA-PBE functional, which is in excellent agreement to the results reported
in this thesis. Unfortunately, no information about the value of the optimized Wyckoff
parameter is presented, which is crucial for the band gap size as pointed out in the last
paragraph.
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Figure 7.6.: The electronic band structures of iron pyrite within the GGA-PBE functional
for four different Wyckoff parameters u = 0.375 (upper left), u = 0.380
(upper right), u = 0.385 (lower left) and u = 0.390 (lower right). In all
those cases the lattice constant has been chosen to a = 5.418 Å. The orbital
character of the bands is indicated in red for Fe 3d and in black for S 3p
states. The fatness of the points corresponds to the orbital contribution.
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FeS2 exp. LDA PBE PBE+U PBE0 HSE06 EXX-OEP
εgap (eV) 0.95 0.65 0.62 0.90 2.98∗ 2.24 2.70∗

Table 7.1.: The size of the fundamental band gap of iron pyrite for the structural parameters
from experiment, i.e. a = 5.418 Å and u = 0.385, is listed using different
exchange-correlation functionals for the DFT calculations. The local functionals
LDA and GGA-PBE, the DFT+U result for Ueff = 2.4 eV and the hybrid
functionals PBE0, HSE06 and EXX-OEP are compared to the experimentally
measured band gap size. For the PBE0 and EXX-OEP result only the Γ-Γ
transition has been calculated (indicated by a “*”), which might be not the
smallest energy transition, and thus the fundamental band gap might be smaller
in these cases.

7.6. Dependence on the Exchange-Correlation
Functional

I have discussed the electronic structure of iron pyrite calculated within the GGA-PBE
functional so far. In this section the dependence of the electronic structure on the choice
of the exchange-correlation functional is examined. I used local functionals like the LDA
functional, but also more sophisticated hybrid functionals like PBE0, HSE06 and EXX-OEP.
Additionally, I discuss the application of the DFT+U method on iron pyrite.

In table 7.1 the size of the fundamental band gaps of iron pyrite are listed using these
exchange-correlation functionals. There is a quite large variation in the band gap size,
with slightly smaller band gaps than the experimental one for the LDA and GGA-PBE
functional, a very nice agreement for the PBE+U calculation and drastically overestimated
band gaps for the hybrid functionals. In the following I will discuss each of these cases
separately:

7.6.1. LDA/GGA Result

The GGA-PBE results have been already discussed in detail in the previous sections, and
thus I will focus on the results of the LDA functional. Using the structural parameters
from the experiment, the band gap size and the orbital character of the bands (not shown)
does not significantly change compared to the PBE results. However, the structural
optimization within the LDA yields quite different results for iron pyrite with an optimized
lattice constant a = 5.29 Å and an optimized Wyckoff parameter u = 0.381, which leads
to an almost metallic system due to the small u. The parabolic fits for the determination
of the optimized structural parameters within the LDA are displayed in Fig. 7.5. The GGA-
PBE results are in much better agreement with the experimentally measured structural
parameters, showing for one system more that the GGA functional tends to an improvement
of the description of bond lengths and lattice constants. From here on all results in this
thesis using a local exchange-correlation functional are calculated within GGA-PBE.
In the literature Opahle et al. [50] report a metallic electronic band structure of iron
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pyrite using the LDA functional and after structural relaxation, since they obtain an
optimized lattice constant of about a = 5.30 Å and a Wyckoff parameter of 0.377. These
values are both in reasonable agreement with the results reported in the last paragraph.

7.6.2. DFT+U Result

In Fig. 7.7 the orbital-resolved electronic band structure of iron pyrite calculated within
the DFT+U method (the GGA-PBE functional has been used as basis) is presented.
For comparison also the GGA-PBE band structure is displayed. An effective Hubbard-U
parameter of 2.4 eV, which has been calculated using the constrained RPA method [85],
has been applied to the localized Fe 3d states, in order to improve their description. The
theory behind the DFT+U approach is discussed in chapter 3.

The DFT+U results exhibit no major changes in the orbital character and the effective
masses, except of the increased band gap size to about 0.9 eV and small changes of
the valence bands around Γ, which are most probably caused by slight changes in the
hybridization with the S 3p states. The agreement of the band gap size with the experiment
is rather satisfying, although the DFT+U method worsens the description of the optical
properties of iron pyrite as I will discuss in the following section. Due to the nice agreement
of the experimental and calculated band gap size, the DFT+U method is used in a couple
of publications dealing with defects or surfaces in iron pyrite [19, 29]. Their DFT+U band
structure agrees well with the results in this thesis.

7.6.3. Hybrid Functional Results

The band gap size of iron pyrite calculated within the hybrid functionals is much larger
than the experimentally determined 0.95 eV and the about 0.6 eV predicted within the
local exchange-correlation functionals. With the PBE0 functional [87] a band gap of
about 2.9 eV is obtained, which is more than 200% larger than the experimental band
gap. Since the PBE0 functional uses unscreened exchange, the band gap sizes tend to be
too large compared to the experiment. Due to the (artificially) incorporated screening the
HSE06 functional (see chapter 3 for theory) is reported to predict reliable band gaps for
semiconductors with not too large band gaps [56, 57]. However, for iron pyrite also the
HSE06 functional tends to a large overestimation of the band gap size with about 2.2 eV
(almost 150% larger than the experimental value).

The electronic band structure calculated within the HSE06 functional is presented in
Fig. 7.8. Since the k-mesh within a HSE calculation can not be chosen arbitrary, and
thus no direct calculation of the band structure along a high-symmetry k-path is possible,
the Wannier interpolation technique [134, 135] has been used to obtain an interpolated
band structure.7 There are no major changes regarding the orbital character of the bands
(not shown), but the Fe 3d t2g and eg states at the edges of the Fermi energy are shifted

7A coarse k-mesh of 4×4×4 and the first 52 bands have been used to obtain maximally localized
Wannier functions of iron pyrite. The first 40 bands are the occupied bands, whereas the last 12
are unoccupied bands. Fortunately, there is no overlap between the first 52 bands and bands at
higher-energies, which considerably simplifies the determination of the Wannier functions.
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Figure 7.7.: The orbital-resolved band structure of iron pyrite for the structural parameters
from experiment is presented using DFT+U . The Fe 3d orbital character is
displayed in red and the S 3p orbital character in black. The size of the points
is connected to the value of the corresponding orbital character. The gray
thin lines represent the GGA-PBE band structure for comparison.

considerably. In GGA-PBE the band gap between the Fe 3d states is about 1.5 eV, whereas
in HSE06 the gap is increased to about 3.5 eV. Consequently also the S 3p band at
the conduction band edge around Γ is shifted together with the Fe 3d bands due to
hybridization, leading to a fundamental band gap size of about 2.2 eV. The character of
the fundamental band gap changes compared to the PBE calculation from an indirect to a
direct one due to slight changes in the hybridization between the S 3p and Fe 3d orbitals
in the quite flat valence bands.

The structural optimization of iron pyrite within the HSE06 functional yields an optimized
lattice constant of a = 5.43 Å and an optimized Wyckoff parameter u = 0.388. The
parabolic fits for the determination of the optimized structural parameters are displayed
in Fig. 7.5. Using the optimized structural parameters from the HSE calculation the
fundamental band gap of iron pyrite is predicted to be 2.66 eV. Due to the larger
Wyckoff parameter compared to the u from experiment, a band gap larger than the
2.2 eV determined with the structural parameters taken from experiment is quite expected.
Using the optimized structural parameters calculated within the GGA-PBE functional,
i.e. a = 5.40 Å and u = 0.383, leads to a fundamental band gap of 1.91 eV, which is still
about 100% larger than the experimental value.
There are two references in the literature, in which there is briefly reported about the

band gap size of iron pyrite using the HSE06 functional [29, 30]. In both cases the same
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Figure 7.8.: The electronic band structure of iron pyrite for the structural parameters from
experiment using the HSE06 functional is presented in red. The Wannier
interpolation technique has been used to obtain the band structure. In gray
the GGA-PBE band structure is indicated for comparison.

code has been used, yielding a fundamental band gap of about 2.7-2.8 eV. They use the
same experimental lattice constant as I did, however it is not clear from the references,
whether they relaxed the structure within HSE, and thus used a Wyckoff parameter different
to the experimental one. Considering the values of the band gaps, I assume they performed
a structural relaxation, since the values correspond to the reported band gap of 2.66 eV of
this thesis using the optimized structural parameters within HSE.

The reason for the quite surprising strong overestimation of the band gap size within
hybrid functionals is discussed in more detail in chapter 10.

For completeness let me me mention that calculations using the EXX-OEP approach8

have been also performed, yielding a band gap of 2.7 eV.

8The EXX-OEP method stands for an exact exchange treatment within an optimized effective potential.
I have not introduced this method in the theory part of my thesis, since the band gap of iron pyrite
is the only results in the thesis, where the EXX-OEP method has been used. The corresponding
calculation has been carried out by Markus Betzinger. More details on the approach can be found in
the literature [136, 137].
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7.7. Optical Absorption

GGA-PBE In Fig. 7.9 the orbital-resolved optical absorption, α, of iron pyrite calculated
within GGA-PBE is displayed. The computational details, how the orbital-resolved optical
absorption has been calculated, can be found in the appendix B. Within photon energies
of maximally 6 eV the major contributions to the transitions are coming from Fe 3d-Fe 3d
(red dashed), Fe 3d-S 3p (blue dotted), S 3p-Fe 3d (green dashed-dotted) and S 3p-S
3p (yellow striped) transitions. All other transitions are negligible in the observed energy
range and become important only for larger energies. Hence, also the sum of these four
orbital-resolved transition rates approximately yields the total transition rate as it can be
seen in the appendix. The term Fe 3d-Fe 3d or S 3p-S 3p transitions refers to transitions
between Fe 3d-rich or S 3p-rich states, but they also need an admixture of other orbital
character via hybridization or p and d electrons at different atoms to fulfill the dipole
selection rule. An exact definition is given in Eq. (B.22) of the appendix B.
The total optical absorption exhibits two major peaks, one located at about ω =

2.1 ± 0.2 eV (marked with A in Fig. 7.9) and another one at about 3.6 ± 0.1 eV (B).
Since the peaks are rather broad, even when reducing the broadening of the Lorentzian
functions, energy ranges rather than energy values are given here for the peak positions.
More precisely, peak A seems to consist of two peaks, where one is at about 2.0 eV and
the other at around 2.2 eV. However, in the following I will treat it as one peak at 2.1 eV
with an error bar of ±0.2 eV. The optical absorption exhibits quite large maximal values of
12 · 105 cm−1 and an average value of more than 9 · 105 cm−1 for energies between 2-6 eV.

The major transitions contributing to peak A are the Fe 3d-Fe 3d transitions, which are
more precisely the transitions between the Fe 3d t2g states of the valence band and the
Fe 3d eg states of the conduction bands, whereas the Fe 3d-S 3p transitions contribute
much less. At first sight that is quite surprising, since the fundamental band gap of iron
pyrite is defined by a VBM of Fe 3d orbital character and a CBM dominated by S 3p
character, and thus the dipole selection rule with ∆l = ±1 is clearly fulfilled, which is
expected to lead to a large optical absorption, as it is also stated by Eyert et al. [35].
Hence, one might expect that the transitions between Fe 3d-S 3p states should be strongly
favored and the first peak should depend on them. However, the wave functions of the
valence states are quite localized at the Fe atoms, whereas the S 3p band at the CBM
is essentially localized at the S atoms, and thus the overlap between the wave functions
entering in the computation of the dipole matrix elements (see appendix B) is very small
for the Fe 3d-S 3p transitions around the band edge. Along the high-symmetry k-path
Γ→ X the dipole matrix elements vanish even completely for the transitions between the
highest valence band and the S 3p band, whereas along Γ→ R they are three orders of
magnitude smaller than the Fe 3d-Fe 3d transitions contributing to the first peak. The
large optical absorption is rather caused by the large LDOS of Fe 3d states hybridized with
a bit of S 3p at the band edges.
The second major peak B comprises mostly of Fe 3d-S 3p and S 3p-Fe 3d transitions,

since for transition energies of more than 3 eV the electrons from the Fe 3d t2g valence
states can be excited to the higher-lying S ppσ∗ states, or electrons from the S ppπ∗ can
be excited to the Fe 3d eg states. For larger transition energies up to 6 eV the S 3p-Fe 3d
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Figure 7.9.: The optical absorption of iron pyrite for the structural parameters from
experiment within the GGA-PBE functional for photon energies up to 6 eV.
The total optical absorption (black solid) is mainly the sum of the Fe 3d-Fe
3d (red dashed), the Fe 3d-S 3p (blue dotted), the S 3p-Fe 3d (green dashed-
dotted) and the S 3p-S 3p (yellow striped) orbital contributions to the optical
absorption. The two main peak positions are indicated by A and B.

and the S 3p-S 3p transitions play the major role. Only for completeness let me mention
that for larger energies than 6 eV the S 4s or Fe 4p states contribute also to the optical
absorption.
To accurately determine the size of the optical band gap, it is common in experiment

to analyze the tail of the first peak in detail by applying a linear regression to the function
(αω)n vs. ω with a power n depending on the type of transition.9 However, for these
fits a parabolic behavior of the highest valence band and the lowest conduction band (or
equivalently a

√
E behavior of the density of states at the band edges) is assumed, which

is clearly not the case in iron pyrite. Nevertheless, in Fig. 7.10 (αω)n is displayed within
the energy range of the tail of peak A from 0.7 to 1.9 eV for n = 1/2 assuming an allowed
indirect transition and n = 1/3 assuming a forbidden indirect transition for the optical
band gap, as it is also done in the reference [34]. The curves show a pronounced non-linear
behavior, which is most probably caused by the non-parabolic behavior of the localized
Fe 3d states at the band edges. It is not quite clear how to apply a linear regression to
these curves, since there are three distinct regions per curve, which all show a more or less

9Since I will not focus on the determination of the optical band gap using these fits beyond this and the
next chapter, I refer the interested reader to the reference [34] and the references within for more
details about the theory. I would like also to point out that no indirect transitions are considered in
the calculated optical absorption, and thus these fits are solely used to investigate their effect on the
tail of the absorption.
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linear behavior, as it is indicated in the figure. Probably it is most consistent to perform
a linear regression to the low-intensity tail for the small energies leading to an optical
band gap of about 0.8 eV for n = 1/2 and 0.75 eV for n = 1/3. This low-intensity tail
comprises of mostly Fe 3d-Fe 3d and Fe 3d-S 3p transitions (not shown). However, due
to the difference in the magnitude of the optical absorption between the tail and peak A,
it might be very difficult to measure the “correct” optical band gap in iron pyrite. Thus,
not only the fundamental band gap might be smaller than the size of the optical band gap
in iron pyrite due to suppressed or even forbidden transitions between the states at the
band edges, but also the measured size of the optical band gap might be larger than the
correct optical band gap due to the low intensity of the tail. Hence, optical measurements
might be not able to obtain the limiting band gap in iron pyrite, which determines the
maximally obtainable open-circuit voltage.

Using the optimized structural parameters of iron pyrite does not significantly change
the position of the first peak (not shown), since the energy gap between the Fe 3d states
at the band edges is not very different (cf. Fig. 7.3). The position of the peak B is slightly
shifted to lower transition energies due to the smaller bonding anti-bonding splitting of the
S 3p states. Therefore, it is sufficient to only compare the optical absorption calculated
within the structural parameters from experiment with the literature.

A comparison of the calculated optical absorption to the literature [33, 34, 138, 139]
reveals that there are two major peaks in the optical absorption for energies lower than 6 eV
and that the position of the first peak is reported to be at about 2.1-2.2 eV, which is in
quite good agreement with the result in this thesis. The peak position of the second peak
deviates from the result in the thesis (3.6 eV), but also the reported values of the three
references are different with values ranging from about 4.0-4.7 eV. Hence, the calculated
position of peak B is located at smaller transition energies than the experimentally measured
one. However, it is not clear how much this peak might be influenced by excitonic effects,
which are not included in the calculations. The optical absorption is reported to have
maximal values of about 5-7 ·105 cm−1 in the range of visible light, and thus the calculated
optical absorption is about 70% larger. It might be that defects in the material lead to
a reduction of the experimentally measured optical absorption. The optical band gap
has been determined to about 0.9-1.2 eV in the references. The problem of applying the
linear regression to curves showing non-linear behavior due to the non-parabolicity of the
states at the band edges in iron pyrite has been also discussed in [34]. In addition, the
low-intensity tail of the optical absorption due to the small dipole matrix elements of the
transitions between Fe 3d and S 3p states might be interpreted in an optical experiment
purely as an effect caused by defects in the material, and thus the optical band gap might
be actually smaller. For instance the linear curve fitting in [34] has been not applied to
the linear regime of the lowest transition energies at about 0.7-1 eV, which is interpreted
to originate from defects, but to the linear regime at larger transition energies. However, I
still observe those low-intensity contributions from Fe 3d-S 3p transitions for these low
energies in pristine iron pyrite. A similar argument has been also reported in a recent
theoretical investigation by Lazić et al. [26].
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Figure 7.10.: The tail of the optical absorption of Fig. 7.9 in the range of 0.7 to 1.9 eV
has been examined in case of an allowed indirect transition (n = 1/2, black
curve) and in case of a forbidden indirect transition (n = 1/3, blue curve)
for the optical band gap as it is presented in the reference [34]. The left
y-axis corresponds to the black curve, whereas the right y-axis is valid for
the blue curve. For the case of n = 1/2 linear fits are indicated for the three
distinct regions of pronounced linear behavior by the thin, dashed black lines.

DFT+U Since the DFT+U method yields a fundamental band gap size of 0.90 eV
(cf. Fig. 7.7), and thus leads to nice agreement to the reported measured band gap of
0.95 eV, it is interesting to also investigate the optical absorption calculated within the
DFT+U method using Ueff = 2.4 eV (see Fig. 7.11).10 It exhibits also two major peaks and
the composition and the absolute values of the optical absorption from the orbital-resolved
contributions is similar to the plain GGA-PBE result. However, the position of the first
major peak (and also the tail of the first peak, which is not shown magnified here, and
thus is barely visible) is shifted by about 0.3-0.4 eV to a larger energy with 2.5± 0.2 eV
compared to the plain GGA-PBE result and the experimentally determined position. This
shift directly corresponds to the enhanced energy gap between the Fe 3d t2g and eg states
due to the inclusion of the Hubbard-U (cf. Fig. 7.7). The second major peak is slightly
shifted to larger energies, now located at about 3.8± 0.2 eV. From the shift of the first

10For the calculation of the optical absorption within DFT+U only a 10×10×10 k-mesh has been used,
instead of the 20×20×20 for plain GGA-PBE. However, already a 10×10×10 k-mesh is sufficiently
dense to predict the positions of the two major peaks.
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Figure 7.11.: The optical absorption of iron pyrite for the structural parameters from
experiment within the DFT+U method using Ueff = 2.4 eV for photon
energies up to 6 eV. The DFT+U method has been applied to a GGA-PBE
calculation. The total optical absorption (black solid) comprises of the Fe
3d-Fe 3d (red dashed), the Fe 3d-S 3p (blue dotted), the S 3p-Fe 3d (green
dashed-dotted) and the S 3p-S 3p (yellow striped) orbital contributions to the
optical absorption. The optical absorption of the plain GGA-PBE calculation
is displayed for comparison (gray dashed curve).

peak, it seems the DFT+U method is not suited to describe the optical properties of iron
pyrite, and the excellent agreement between the measured band gap and the calculated
one might be a deception. It might be that the experimentally determined band gap is
larger than the fundamental band gap, and even the measured optical band gap might be
overestimated due to the low-intensity contributions, as stated previously, and thus the
fundamental band gap can not be easily compared to the size of the optically measured
band gap. Hence, the DFT+U method might even not capture the right electronic band
structure.
For completeness let me mention that the optical absorption within the hybrid functionals

leads to completely different peak positions as compared to the experiment due to the
strong overestimation of the energy gap between the Fe 3d t2g and eg states, and thus the
electronic band structure as well as the optical properties of iron pyrite are not captured
by hybrid functionals.

Dielectric Function The dielectric function ε(ω) is closely related to the optical absorp-
tion α(ω),11 and since there are a couple of references, which report about ε(ω), instead

11The optical absorption can be calculated from the dielectric function via the following equation:
ω
cn Im (ε(ω)). The dielectric function describes the (linear) response of the system to an electric field.
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Figure 7.12.: The dielectric function ε(ω) of iron pyrite depending on the energy ~ω (~ is
omitted in the figure) and calculated within GGA-PBE (black curves) and
DFT+U (red curves) using the structural parameters from experiment is
shown. The real part Re (ε) is presented as solid curve, whereas the imaginary
part Im (ε) is displayed as dashed curve. The blue dashed line indicates the
vacuum dielectric constant of 1.

of α(ω), for iron pyrite, I present the results on the dielectric function calculated within
GGA-PBE and DFT+U in Fig. 7.12.

The dielectric function is a complex quantity, where the real part Re (ε) is related to a
stored energy in the medium exposed to an electric field, whereas the imaginary part Im (ε)
describes the energy dissipation via absorption. Both quantities are related to each other
via the Kramers-Kronig relation, and thus only one component needs to be calculated
directly from DFT. The real part of the dielectric function for ω = 0 corresponds to the
static dielectric function, which is calculated to be about 20 within GGA-PBE and 17
within DFT+U . The imaginary part of the dielectric function is closely related to the
optical absorption, and thus there are also two major peaks, one at about 2 eV and another
one at about 3.5 eV. The peaks are also shifted by 0.3-0.4 eV for the DFT+U result
compared to plain GGA-PBE.

Since the light wave exposes the material to an external, oscillating electric field, there is a close
connection between α and ε.
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A comparison with a recent publication reporting about the dielectric function experimen-
tally measured and calculated via DFT within GGA-PBE yields a very nice agreement [36].
They report also that the critical points of the dielectric function are considerably shifted
using DFT+U , leading to a worse agreement with experiment. The peak positions and
their orbital decomposition reported in this thesis correspond nicely to results predicted
by Vadkhiya et al. [140] and Antonov et al. [141]. An experimental study by Schlegel et
al. [142] reports the two major peaks of the dielectric function to be located at around
1.7-1.8 eV and 3.7-3.9 eV, respectively, which is in reasonable agreement to the reported
values of Suga et al. [143] with 1.6-1.8 eV and 3.9-4.1 eV.12 Again, the location of the
first peak is in nice agreement with the theoretical predictions, whereas the second peak is
a bit off. In all mentioned references the static dielectric constant ε(ω = 0) is reported to
be about 20, which matches the calculated value in this thesis.

7.8. Conclusions

The electronic structure and the optical properties of iron pyrite have been examined
within DFT using the local exchange-correlation functionals LDA and GGA-PBE, as well
as more sophisticated hybrid functionals and the DFT+U method. The results have been
also compared to the literature, leading to an overall nice agreement.

The electronic structure of iron pyrite can be understood easily in terms of the geometrical
structure, since a complex hybridization between Fe 3d states and S 3p states is formed
around the Fermi energy due to the crystal field splitting of the Fe 3d states and the
bonding anti-bonding splitting of the S 3p states caused by the octahedral symmetry and
the covalent bonding of the S atoms in the S dimers, respectively. The fundamental band
gap has a size of about 0.6 eV within GGA-PBE and is defined by a VBM exhibiting a strong
Fe 3d t2g orbital character and a CBM comprised of pure S 3p orbital character. This has
eminent consequences on the dependence of the band gap on the Wyckoff parameter u,
which controls the distance of the S atoms in the S dimer, and for the optical absorption.
The first one can be explained due to the dependence of the bonding anti-bonding splitting
on the Wyckoff parameter, leading to smaller band gap sizes for smaller u. For instance
the band gap size is about 0.4 eV for the optimized structural parameters, although u
changes only 0.5% compared to the structural parameters from experiment. That explains
also the large deviations in the reported band gap results from computations [29, 45–50]
and from experiments [34], which might be caused by slight differences of a few percent
in u. The difference in u for different crystals is most probably not related to intrinsic
defects, since the formation energy for these defects is reported to be quite large [17].
This is unlike the situation in CuIn(S,Se)2, where a strong dependence of the band gap on
the internal parameter is observed, which on the other hand is strongly influenced by the
Cu vacancy concentration in the material [144].

The band gap size depends also significantly on the choice of the exchange-correlation
functional, where the local functionals LDA and GGA-PBE predict a band gap size, which

12Since the references do not report the exact value of the peaks, but rather show figures of the dielectric
function, these values have been estimated by eye from the figures.
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is about 35% smaller than the experimentally determined one. However, regarding only the
absolute difference of the band gaps, the agreement can be identified as surprisingly good,
since the local functionals usually tend to a large underestimation also in terms of the
absolute value of the band gap. The more sophisticated hybrid functionals yield drastically
overestimated band gap sizes, which are about 150-200% larger than the experimental
value. A possible explanation of this behavior is presented in the chapter 10. The DFT+U
method for Ueff = 2.4 eV yields with about 0.9 eV the best result for the band gap
compared to the experiment.
However, where the optical absorption within GGA-PBE is in nice agreement with

experiment, the optical absorption within DFT+U is considerably worse. The optical
absorption consists of two major peaks within the range of transition energies up to 6 eV,
one located at about 2.1 eV and the second at 3.5 eV, whereas these values are shifted by
0.3-0.5 eV to larger energies within DFT+U . The first peak is caused mainly by transitions
between Fe 3d t2g and Fe 3d eg states and the second peak comprises of Fe 3d t2g and
S 3p transitions. The orbital composition of the first peak is quite surprising, since the
band edges in iron pyrite are of Fe 3d character at the valence bands and S 3p character
at the conduction states, and thus one might expect a large optical absorption for low
energies coming from Fe 3d-S 3p transitions. However, the wave functions of the highest
valence states are quite localized at the Fe atoms, whereas the wave functions of the
lowest conduction p state is located almost entirely on the S atoms, leading to small
dipole matrix elements. The first peak is in very nice agreement to experiment [34, 138,
139], whereas the second peak is shifted by about 0.5 eV to smaller energies, which might
change if excitonic effects were included in the calculations.

The tail of the optical absorption at the first peak determines the size of the optical band
gap and most of the experimentally determined band gaps of iron pyrite are based on optical
measurements. Interestingly, the tail is quite long exhibiting a quite untypical behavior
due to the non-parabolic valence states in iron pyrite, the Fe 3d-S 3p transitions become
more eminent and the magnitude of the optical absorption is much smaller compared to
the magnitude of the peaks. Therefore, it might be that optical experiments measure
the energy gap between the Fe 3d states at the band edges instead of the optically
suppressed Fe 3d-S 3p transitions, and thus the “real” optical band gap might be smaller.
In addition, the transitions along Γ→ X between the VBM and the CBM exhibit even
zero dipole matrix elements, which might lead even to a considerable difference between
the fundamental and the optical band gap in iron pyrite.
Hence, optical experiments might not obtain the limiting band gap of iron pyrite for

photovoltaic applications. A smaller band gap as the measured one could be a quite natural
explanation for the low open-circuit voltage in iron pyrite solar cells. A more detailed
discussion about a possible interpretation of the characteristic photovoltaic quantities of
iron pyrite by comparing to the results of this thesis follows in the next chapter in the
context of the GW calculations.
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8.1. Introduction

Essential to the GW approximation is the introduction of an electrostatic screening, i.e. an
electron is screened by an oppositely charged Coulomb hole reducing the effective charge
of this electron, which then leads to a screened Coulomb interaction between the electrons
instead of a bare Coulomb interaction. Therefore, since there are quasiparticles that can be
added or removed, GW describes the physics of a (inverse) photoemission experiment, and
thus this usually leads to an improvement of the calculated band gap sizes compared to
“conventional” DFT. More details about the theory and the most important characteristic
quantities have been presented in chapter 4.

As discussed in the previous chapter, the fundamental band gap of iron pyrite calculated
within DFT strongly depends on the choice of the exchange-correlation functional. Due to
the special orbital character of the corresponding band edges, it might be that the optical
experiments do not obtain the “real” band gap, which limits the photovoltaic performance
of an iron pyrite solar cell. Thus, it is quite interesting to investigate iron pyrite within the
GW approximation, which is known for a reliable band gap prediction for a wide range of
materials.
The GW calculations are classified into single-shot GW calculations on top of a DFT

calculation (denoted as G0W0@DFT) and a quasiparticle selfconsistent GW (QSGW )
approach. First the electronic structure and the optical properties of iron pyrite are
investigated within G0W0@PBE. Then the starting-point dependence of G0W0 in the case
of iron pyrite is investigated, which is followed by results on the (almost) starting-point
independent QSGW calculations.

Some of the presented results in this chapter are already published in [25].

8.2. Computational Details

In GW calculations usually much more effort is needed to converge the results compared
to “conventional” DFT calculations, since in GW also a reasonably accurate description of
the unoccupied energy spectrum and wave functions is necessary. For some systems many
electronic bands might be needed for the calculation, which demands for large plane-wave
cutoff parameters kmax, large angular momentum cutoffs lmax as well as the inclusion of
many higher-energy local orbitals. In addition the inclusion of semicore states as local
orbitals (LOs) into the LAPW basis is essential to not only avoid “ghost bands” in the
occupied energy spectrum, but also to improve the unoccupied spectrum.
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For the GW calculations the Spex code [69] has been employed and the Fleur
code [66] has been used to obtain the starting point for the GW approximation. A
plane-wave cutoff of kmax = 6.0 a.u.−1 and an angular momentum cutoff lmax = 12 has
been used. Although it is a considerably large value for kmax, the LAPW basis shows no
problems with linear dependencies yet. The problematic behavior starts not before using
values of about 6.5 a.u.−1. To reduce the linearization error of the FLAPW method in the
unoccupied energy spectrum five full sets of s, p, d and f states as local orbitals (LOs)
have been used per Fe and S atom, i.e. 80 additional basis functions per atom entered the
FLAPW calculation via higher-energy LOs.
The convergence with the number of bands is presented in Fig. 8.1. First of all, it is

surprising that about 2000-3000 bands are necessary to obtain a converged result for the
transitions at the band edges from Γ→ Γ (black diamonds), X → Γ (green squares), and
R → Γ (red pentagons). A difference of 0.1-0.2 eV between using 800 bands and 3000
bands seems not to be very large, however, note that the energy of the transitions is quite
small, and thus the relative differences are rather large with changes of almost 100% of
the size in some cases. Interestingly, the convergence with the number of bands is much
faster for the transitions exhibiting the same orbital character at the band edges, here for
X → X (blue dots) with Fe 3d character, whereas it is much slower for transitions from
Γ, X and R to Γ, for which the orbital character is Fe 3d for the valence band and S 3p
for the conduction band. The faster convergence for X → X might be caused by an error
cancellation, since bands of same orbital character experience a comparable treatment
within GW , and thus systematic errors might compensate in the difference of the energies.
Similar observations regarding the convergence behavior have been reported for ZnO, in
which a large number of bands is needed due to a band transition of bands with different
orbital character and a strong hybridization between these orbitals [101, 102].
The Fe 3s and 3p semicore states have to be included as LOs into the LAPW basis.

The left panel and right panel of Fig. 8.1 show the convergence of the band transitions for
the case, where they have been included into the basis (left) or they remain in the core
(right). The behavior of convergence is quite similar, except that it is much smoother
when the Fe 3s and 3p states are treated as LOs. However, the energy of the transitions
including a change in orbital character is quite different with about 0.3 eV difference,
whereas the transition from X → X exhibits again much smaller changes of only 0.05 eV.
The experience shows that the inclusion of semicore states into the basis is much more
important in GW (and for orbital-dependent functionals) compared to “conventional” DFT
and usually it leads to improved results [136, 145–148]. Hence, the results presented in
this chapter include the Fe 3s and 3p semicore states into the basis.
The required computational time of a GW calculation within the Spex code scales

quadratically with the number of k-points and not linear like in “conventional” DFT
calculations within Fleur, and thus “only” a 4×4×4 k-mesh is used for the GW
calculations. As already stated in the appendix D this k-mesh is sufficient to provide
converged results. A test calculation with a 6×6×6 k-mesh within the GW approximation
yielded no significant change of the results.
The situation is different for the calculation of the optical absorption, where much

more k-points are needed to have a sufficiently large number of transitions. For the
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Figure 8.1.: The convergence of the transition energies of iron pyrite between the band
edges for the transitions Γ→ Γ (black diamonds), X → Γ (green squares),
R→ Γ (red pentagons), and X → X (blue circles) depending on the number
of electronic bands using G0W0@PBE is presented. The structural parameters
from experiment have been used. The left panel shows the results including
the Fe 3s and 3p semicore states as LOs into the LAPW basis, whereas they
have been not included in the results displayed in the right panel.

“conventional” DFT calculations at least a 10×10×10 k-mesh has been used, which is
computationally not feasible for GW . Hence, also there the k-mesh has been restricted
to 4×4×4, which might be underconverged.

8.3. Electronic Structure within G0W0@PBE

The electronic band structure calculated within G0W0@PBE using the structural parameters
from experiment is presented in Fig. 8.2. The k-path R→ Γ→ X ′ has been used, since
it contains the band edges defining the fundamental band gap in GGA-PBE as well as in
GW . Most remarkable is the reduction of the size of the fundamental band gap from
0.62 eV within GGA-PBE to 0.27 eV within G0W0@PBE. The experience has shown that
for most semiconductors and insulators the local exchange-correlation functional predicts
too small fundamental band gap sizes, which then is remedied within GW by enlarging the
band gap size. However, this is only a rule of thumb and not a strict rule. I will present
a possible explanation of this atypical behavior in chapter 10, which is connected to the
large screening in iron pyrite (and related compounds).

The shape of the bands is only slightly modified by GW with the largest change being
the effective mass of the parabolic band at the CBM changing from about 0.48 me in
GGA-PBE to 0.68 me after applying GW . Therefore, the electronic mobility is about 50%
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larger within GW .1 The valence bands of iron pyrite become slightly more flat within
GW , which changes the k-point at the valence band defining the fundamental band gap
from a point close to X to a point nearby Γ along Γ-X. The orbital character of the
electronic bands is unchanged compared to the GGA-PBE result, since only the diagonal
elements of the exchange-correlation potential in representation of the Kohn-Sham wave
functions have been used.2 Thus, the fundamental band gap becomes smaller within GW ,
because the S 3p band at the conduction band edge around Γ drops down relative to the
position of the Fe 3d states. To be more precise, the Fe 3d states located at the valence
band edge and at the conduction band edge are both shifted upwards about 0.3-0.5 eV
by the quasiparticle correction, whereas the S 3p band around Γ is only slightly shifted
upwards by about 0.1 eV, and thus in total the fundamental band gap becomes smaller.
The transition energies for the transitions Γ→ Γ, X → Γ, R→ Γ and X → X using

GGA-PBE, and G0W0@PBE with and without including the Fe 3s and 3p semicore states
as LOs into the basis, are listed in the Table 8.1. The transition X → X between Fe
3d states is only slightly increased from 1.62 eV to 1.67 eV. But then, the transitions
from the highest valence band to the CBM at Γ become all significantly smaller by about
0.3 eV. The quasiparticle energy corrections of the Fe 3d states are quite sensitive to
numerical parameters like the number of bands or LOs, in contrast to the corrections for
the S 3p band, which are insensitive to these numerical parameters. For instance there is
a significant difference in the transition energies including Γ depending on the treatment
of the Fe 3s and 3p semicore states, which can be as large as about 0.3 eV. The quite
strong dependence of the size of the fundamental band gap on the Wyckoff parameter
u is also observed in the GW results. Using the optimized structural parameters of iron
pyrite (a = 5.40 Å and u = 0.383) leads to an almost metallic system with a band gap
size of less than 0.1 eV when applying GW on top of GGA-PBE.

The unconventional reduction of the band gap size in iron pyrite within G0W0@PBE has
been already briefly reported in the literature. Both Sun et al. and Choi et al. report a band
gap size of about 0.4 eV after applying GW to the GGA-PBE result [29, 36]. However,
no further details like the electronic band structure or a convergence analysis of the GW
results are presented. As I have demonstrated in the previous section the convergence of
the GW results for iron pyrite can be rather elaborate.

8.4. Optical Absorption

The optical absorption of iron pyrite calculated according to appendix B within G0W0@PBE
is presented in Fig. 8.3. Since it is unfeasible to perform a GW calculation for iron pyrite

1The effective mass has been estimated in an experiment to be about 0.45 me using the peaks in the
optical absorption [149]. However, the error on this value might be quite large, since the estimation
used approaches assuming a parabolic band behavior of the conduction and valence bands in iron
pyrite.

2Using furthermore the non-diagonal matrix elements of the exchange-correlation potential 〈φi|Vxc|φj〉
in representation of the Kohn-Sham wave functions φi within G0W0 allows a change of the wave
functions. A test calculation yielded no significant changes of the electronic band structure of iron
pyrite at the high-symmetry k-points compared to the results presented in Fig. 8.2.
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Figure 8.2.: The electronic band structure of iron pyrite calculated within single-shot
GW on top of GGA-PBE using the structural parameters from experiment
is indicated as red diamonds, whereas the plain GGA-PBE band structure is
shown as black dots.

Γ→ Γ X → Γ R→ Γ X → X
GGA-PBE 0.66 0.63 0.96 1.62
G0W0 (w) 0.28 0.31 0.59 1.67
G0W0 (w/o) 0.61 0.63 0.90 1.72

Table 8.1.: The transitions energies of the transitions Γ → Γ, X → Γ, R → Γ and
X → X for iron pyrite within GGA-PBE and single-shot GW on top of GGA-
PBE (G0W0@PBE) are listed. The G0W0 calculations have been carried out
with (w) and without (w/o) the inclusion of the Fe 3s and Fe 3p semicore
states as local orbitals into the LAPW basis to evaluate the numerical sensitivity.
Iron pyrite with the structural parameters from experiment has been used.
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with a more dense k-mesh than 4×4×4, the optical absorption of GW might be not
fully converged. For comparison the optical absorption calculated within GGA-PBE for a
4×4×4 and 20×20×20 k-mesh is displayed, showing some differences in particular for
the second major peak. There are some additional peaks in the optical absorption for
the coarse k-mesh, which become much smaller using the dense k-mesh. However, the
position of the first peak is more or less already correctly predicted within the coarse
4×4×4 k-mesh. Note that since the single-shot GW approach does not alter the wave
functions, the only difference between the optical absorption of the GW and the DFT
calculation arises from the difference in the band energies. The slightly increased energy
gap between the Fe 3d states at the band edges is the reason of the slight shift of the
first major peak by less than 0.1 eV compared to the GGA-PBE result. The considerably
shifted S 3p band at the bottom of the conduction bands leads to a shift of about 0.5 eV
of the second major peak, which then slightly overlaps with the first peak, and leaving
a large dip in the absorption where the second peak has been located within GGA-PBE.
However, the role of excitonic effects, which are not included in our calculations, are not
clear. The tail of the optical absorption comprises of Fe 3d-Fe 3d transitions and Fe 3d-S
3p transitions, where the latter become more dominant for the smaller transition energies
(cf. Fig. 7.10). Now the tail is more extended due to the shift of the S 3p band.

There might be still a problem to distinguish in optical experiments the low intensity
contributions of the tail from defects, and thus the measured optical band gap might
be overestimated. Experiments might measure the energy gap between the Fe 3d states
instead, which is quite similar to the GGA-PBE results. Hence, regarding the optical band
gap and the position of the first major peak, also the GW results of iron pyrite are in
nice agreement with the experimental findings (in difference to the DFT+U results, see
previous chapter), and neither GGA-PBE nor GW can be preferred for the calculation of
iron pyrite.

8.5. Starting-Point Dependence of the GW Results

The single-shot GW approach suffers of a starting-point dependence, which has already
been extensively discussed in the literature [58–60, 103]. The distinctiveness of the starting-
point dependence is quite material-dependent, and thus I investigate the starting-point
dependence of G0W0 for iron pyrite in this section. A systematical approach involves the
DFT+U method, since it allows relatively easy and in a controllable way to realize different
starting points by changing the Hubbard parameter Ueff . The hybrid functional HSE06
has also been used as a starting point. Finally, I briefly discuss also the results for iron
pyrite using the quasiparticle selfconsistent GW (QSGW ) approach, which is (almost)
starting-point independent.

G0W0@DFT In Fig. 8.4 the energy of the transitions Γ → Γ (includes a change in
orbital character), X → X (transition between two Fe 3d states) and the fundamental
band gap are displayed using DFT+U and G0W0@PBE+U for Ueff between 0 and 4 eV.
The fundamental band gap has only been calculated within DFT+U by determining the
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Figure 8.3.: The optical absorption of iron pyrite for the structural parameters from
experiment calculated within GGA-PBE (black curves) and G0W0@PBE (red
curve). For comparison two calculations within GGA-PBE are displayed,
one using a 20×20×20 k-mesh like in Fig. 7.9 denoted as (a) and another
calculation using a 4×4×4 k-mesh (as it is used for the GW calculation),
denoted as (b). For the calculations with the 4×4×4 k-meshs a tetrahedron
method has been exploited.

smallest energy gap at the band edges in the electronic band structure. The orbital-resolved
band structures for Ueff = 0, 2, 3 and 4 eV are presented in the appendix F. There it
can be observed that the orbital character of the band structures does not significantly
change when applying the Hubbard U correction. However, a more detailed analysis of the
orbital contributions yields, that the upmost valence band is almost Fe 3d pure for smaller
Hubbard U parameters, whereas it comprises of Fe 3d orbital character and a considerable
contribution from S 3p for Hubbard U parameters larger than about 3.0 eV, due to an
exchange of bands. The shape of the bands changes slightly due to these changes in the
orbital hybridization, and thus a change from an indirect to a direct fundamental band
gap is observed when using Ueff ≥ 3 eV. That explains why the fundamental band gap
and the direct transition Γ → Γ have the same values in Fig. 8.4 for Ueff = 3 and 4 eV.
Note that the fully-localized limit has been used for the double counting in DFT+U , in
difference to the results of the previous chapter, and thus the fundamental band gap for
Ueff = 2.4 eV is slightly smaller here. However, the choice of double counting for DFT+U
has no influence on the behavior of the starting-point dependence of the G0W0@PBE+U
calculations of iron pyrite.
Overall, there is a linear dependence between the energy gaps and Ueff for a large

interval of values for Ueff . Only for values Ueff larger than 2.5-3 eV a saturation effect is
observable. As already observed for plain DFT, the application of G0W0 decreases the
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Figure 8.4.: The starting-point dependence of the G0W0 approach for iron pyrite using
the structural parameters from experiment is represented by exploiting the
results of DFT+U for different Hubbard parameters Ueff as starting points. In
the left panel the fundamental band gap calculated within DFT+U using the
GGA-PBE functional (solid black curve), the energy of the transition Γ→ Γ
within DFT+U (dashed black curve) and G0W0@PBE+U (dashed red curve)
are displayed. In the right panel the energy of the transition X → X is shown
for the DFT+U (solid black curve) and G0W0@PBE+U calculation (solid red
curve). The gray dashed line indicates the results for Ueff = 2.4 eV, which is
the U value calculated within constrained RPA, and which has been used in
the previous chapter. All these transition energies (including the band gap)
are denoted as E in the y-axis label.

energy gap of the transition Γ → Γ for all investigated values of Ueff . The behavior of
the transition energy depending on the Hubbard U parameter remains also linear when
applying G0W0, but it exhibits a less steep gradient. For the transition X → X the G0W0

approach yields slightly larger transition energies than DFT+U and the linear dependence
exhibits a quite similar gradient. Overall, the G0W0 approach is starting-point dependent
for iron pyrite, however, the dependence is smaller or at least comparable to the changes
within the different DFT approaches. For the DFT+U method using different values for
U the Γ→ Γ transition energy ranges only from about 0.25 to 0.35 eV and the energy of
the transition X → X changes from about 1.6 to 2 eV within the linear regime.

For completeness let me mention that a G0W0 calculation on top of the hybrid functional
HSE06 has been also executed, yielding a value of about 1.7 eV for the transition at the
band edges of Γ, which is smaller than the 2.2 eV calculated within HSE06.3 However,

3For the HSE06 and G0W0@HSE06 calculation the Fe 3s and Fe 3p semicore states have been not
treated as LOs in the LAPW basis.
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a value of 1.7 eV is still much too large compared to experiment and the HSE06 result
seems not to be a proper starting point for the G0W0 calculation.

Quasiparticle Selfconsistent GW The quasiparticle selfconsistent GW (QSGW )
approach [61] is (almost) starting-point independent, and thus it is interesting to compare
the G0W0 results of iron pyrite to those calculated within QSGW .4 The QSGW approach
is an iterative method, in which a mean-field potential calculated from the self energy of
the GW calculation is inserted into the DFT calculation in each step.5 In Fig. 8.5 the
energy of the transitions from the states at the band edges at Γ and X is displayed for
the first three iterations within QSGW . Additionally, the energy gap between the S 3ppπ∗

and Fe 3d t2g states (located at about −2.0 and −1.5 eV, respectively, in Fig. 7.2) is
investigated.

The zeroth iteration within QSGW corresponds to theG0W0@PBE calculations discussed
previously, but with the difference that the non-diagonal elements of the exchange-
correlation matrix in representation of the Kohn-Sham orbitals have been also considered.
There is almost no difference between these G0W0 results and those treating only the
diagonal elements, as it can be seen by comparing the results in Fig. 8.5 and Table 8.1.
Interestingly, the QSGW results for iron pyrite are already converged after the first iteration,
and thus the first iteration exhibits quite large changes for the energy gaps. In particular
the transition energy of Γ → Γ at the band edges considerably changes from about
0.3 eV within G0W0 to 0.9 eV in the QSGW approach. But also the other transitions
exhibit evident changes: the energy gap between the Fe 3d states at the band edges is
increased from about 1.7 eV in G0W0 to 1.9 eV and the energy gap between the S 3ppπ∗

and Fe 3d t2g states is decreased from 2.3 to 2.0 eV. Thus, the Fe 3d states are mainly
pushed apart from each other, which leads to the larger fundamental band gap. Actually,
these results are quite similar to the DFT+U calculation using the Hubbard U of 2.4 eV
determined via constrained RPA (cf. Fig. 7.7), and thus the major effect of the QSGW
calculation on iron pyrite seems to be the consideration of the correlation of the Fe 3d
states. The mean-field potential entering the DFT calculation in each iteration seems to
be essentially altered by the GW calculations in a manner comparable to DFT+U .
Like the DFT+U result also the fundamental band gap of QSGW is in very nice

agreement to the 0.95 eV observed by experiment. However, also for QSGW the optical
absorption is most probably worse than the GGA-PBE result when comparing to the
experiment, since the energy gaps between the Fe 3d t2g and Fe 3d eg states at the band
edges defining the first major peak in the optical absorption are considerably shifted within
QSGW . These energy gaps with about 1.9 eV are even predicted to be larger than in
DFT+U with 1.8 eV, which might even worsen the optical spectrum. Note that no optical
absorption has been calculated for iron pyrite using QSGW , since it has been unfeasible to
use a proper size for the k-mesh, and thus the the discussion about the agreement of the
optical absorption with experiment are pure assumptions. However, there is a report about

4The QSGW method is computationally quite demanding, therefore the k-mesh for these calculations
has been chosen to be 2×2×2.

5The brief basics about QSGW have been already discussed in chapter 4.
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Figure 8.5.: The energies for the transitions at the band edges at Γ (solid black curve,
denoted as Γ → Γ (a)) and X (dashed-dotted blue curve) as well as the
energy gap between the S 3ppπ∗ and Fe 3d t2g states at Γ (dashed red curve,
denoted as Γ → Γ (b)) are shown for iron pyrite for the first three iterations
within the selfconsistent GW approach. The zeroth iteration corresponds to
the single-shot G0W0@PBE calculation, except that also the non-diagonal
exchange-correlation matrix elements in representation of the Kohn-Sham
orbitals are treated. The structural parameters from experiment have been
used. In the right panel a sketch of the positions of the Fe t2g and eg band
edges, the S 3p band defining the CBM and the highest S 3ppπ∗ state at Γ
is displayed for the GGA-PBE, G0W0 (zeroth iteration) and QSGW (second
iteration) results.
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the electronic band structure calculated within QSGW , in which the fundamental band
gap is reported to be 0.81 eV and the transition energy of the band edges at X is about
1.8-1.9 eV [63], which are both in good agreement with the QSGW results of this thesis.
The band structure looks quite similar to the DFT+U band structure in Fig. 7.7, and thus
the assumptions on the optical absorption within QSGW do not seem to be far-fetched.

The large difference in the results for iron pyrite using QSGW or G0W0@PBE are rather
surprising, in particular since G0W0@PBE decreases the size of the fundamental band gap
compared to the GGA-PBE result, whereas QSGW increases the result. Unfortunately,
there has been no time any more to search for the reason in detail, and a more fundamental
analysis is beyond the scope of this thesis. Hence, I can only speculate at this point.
Maybe the difference is related to a significant change in orbital-character caused by the
GW corrections, which does not appear yet after applying GW once, but only for an
iterative approach. The similarity between the DFT+U and QSGW result indicates that
the (strong) localization of the Fe 3d states might be treated considerably different in a
selfconsistent scheme compared to the single-shot approach. Since the fundamental band
gap size calculated within QSGW coincides with the experimentally measured gap, one
might prefer and favor the QSGW over the single-shot results. However, apart of the
arguments about the optical absorption, note that the fundamental band gaps of simple
semiconductors (and many more not so simple compounds, without referring to them) are
usually very well described within G0W0@DFT, often almost on top of the experimentally
measured band gaps, whereas QSGW tends to a slight to moderate overestimation of
these gaps. I present a couple of results for simple semiconductors in appendix A to back
up this statement.

8.6. Conclusions

The electronic band structure and the optical properties of iron pyrite within the single-shot
GW approach and the quasiparticle selfconsistent GW (QSGW ) method have been
discussed in this chapter.

The convergence of the GW calculations for iron pyrite is much more subtle compared to
the “conventional” DFT calculations discussed in the previous chapter. Many higher-energy
local orbitals (LOs), a large plane-wave cutoff, and angular momentum cutoff as well
as 2000-3000 electronic bands need to be used to converge the results, and thus the
calculations are computationally quite demanding. In addition, the inclusion of the Fe
3s and Fe 3p semicore states as LOs into the FLAPW basis is essential. In particular for
the fundamental band gap the convergence is subtle due to the different orbital character
of the VBM and CBM, whereas the convergence of the energy gap between the Fe 3d
states profits from an error cancellation. It is quite unconventional that the G0W0@PBE
calculation decreases the fundamental band gap of iron pyrite from about 0.6 eV to about
0.3 eV. The energy gap between the band edges at X is only slightly increased, and thus
the optical absorption calculated within G0W0@PBE looks quite similar compared to the
plain GGA-PBE result, and both are in satisfactory agreement with the experimentally
measured optical absorption.
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Since the optical absorption exhibits a quite long low-intensity tail comprised of the
transitions between the Fe 3d t2g and Fe 3d eg states, and Fe 3d t2g to S 3p transitions,
where the latter transitions become more eminent for lower transition energies, it might
be that experiments measure not the “real” optical band gap of iron pyrite, but the energy
gap between the Fe 3d states, which dominate the first major peak in the absorption. The
low-intensity tail might be interpreted as being caused by defects only. The fundamental
band gap might be even smaller than the optical band gap, since the optical transitions
between Fe 3d t2g and S 3p are suppressed.

Such a small fundamental band gap like 0.3 eV as calculated within G0W0@PBE would
have dramatic consequences for photovoltaic applications. The open-circuit voltage of
maximally 0.2 V in iron pyrite [13] might be explained by a small fundamental band
gap, which can hardly be detected in experiments. The large intrinsic charge carrier
densities of 1014-1018 cm−3 in undoped pyrite [14, 27] and an activation energy of 0.2 eV in
temperature-dependent electrical resistivity measurements [37, 38] might be also caused by
a small band gap. The long low-intensity absorption tail observed in the optical absorption
experiments [34, 138, 139] might not only arise due to defects, but the Fe 3d to S 3p
transitions might be the reason for it. If the disappointing performance of iron pyrite solar
cells were based on the electronic structure of pristine pyrite, a reduction of defects and
precipitates would be the wrong approach.

However, a small fundamental band gap in pristine iron pyrite would not automatically
exclude iron pyrite as photovoltaic material, since there are two approaches, which might
increase the gap. The aim is to shift the S 3p band at the CBM upwards, and as it has
been discussed in the previous chapter, a smaller distance of the S atoms in the S dimer,
i.e. a larger Wyckoff parameter u, increases the splitting between the S ppσ states, and
thus increases also the size of the gap. Hence, applying stress to FeS2 pyrite might be a
remedy, although it is not clear in which way stress influences the other bondings. The
second approach, which might increase the gap size is the doping with O as substitutional
defect for S. The wave functions are more localized on the O atoms leading to a reduction
of the band width of the ppσ∗ states. Hu et al. report of a band gap opening of 0.2-0.3 eV
using oxygen doping concentrations of 12.5% in iron pyrite in their DFT calculations [31].
However, the achievable oxygen doping concentrations in experiment might be quite small
and it is not clear how stable the doped compounds are.
To conclude the size of the fundamental band gap in iron pyrite needs a thorough

reexamination both in experiment and theory. This might be a quite difficult task, since the
low-intensity contributions in the optical absorption, the untypical shape of the electronic
bands far from parabolic behavior, and the small contribution of the S 3p state at the
band edge at Γ in the density of states, display a challenge for experiments, like optical
experiments, (inverse) photoemission spectroscopy or scanning tunneling microscopy. The
theory still has to understand the extraordinary large deviations of the predicted band
gap of iron pyrite for different exchange-correlation functionals and the large difference
between the results using the G0W0@PBE and QSGW method. In the next two chapters I
will investigate a couple of pyrite compounds and marcasite compounds, which are closely
related in structure to the pyrites, and by this I speculate about the atypical behavior in
DFT and GW calculations.

94



9. FeS2 Marcasite: The undesired
Phase?

9.1. Introduction

The FeS2 marcasite compound is structurally closely related to iron pyrite and is observed
to coexist with it under certain conditions [24]. The suitability of iron marcasite for
photovoltaic applications is thus of large interest. In addition, similarities between the
electronic structure of the marcasite phase and the pyrite phase are expected, and thus
it might be that more systems exhibit the unconventional behavior of iron pyrite when
applying hybrid functionals or the GW approximation.
The band gap of FeS2 marcasite has been reported to be only 0.34 eV in a reference

from the year 1980 using electrical resistivity measurements [32]. Since then, for a long
time there have been no further investigations on iron marcasite regarding the suitability for
photovoltaic applications to my knowledge, and the marcasite phase has been considered
to be improper for photovoltaic applications. However, a quite recent study combining
optical absorption experiments with DFT calculations indicates that FeS2 marcasite might
have a comparable absorption and an at least as large band gap as compared to iron
pyrite [33], which is reported to have a 0.95 eV band gap.
Thus, in this chapter I approach the question whether FeS2 marcasite really is an

undesired phase for photovoltaic applications. Some of the results presented in this chapter
are already published in the literature [25].

9.2. The Marcasite Structure

The unit cell of iron marcasite is diplayed in Fig. 9.1. It is orthorombic and it contains
2 Fe atoms and 4 S atoms. Similar to the pyrite structure the marcasite structure is
characterized by S dimers and an (almost) octahedral coordination of the S atoms around
the Fe atoms. In contrast to the pyrite structure, where the octahedrons share their corners,
here they share their edges. Each S atom is tetrahedrally surrounded by 3 Fe atoms and
one additional S atom, with which it forms a S dimer bond. The orthorombic unit cell is
described via the three lattice parameters a, b and c, and the internal parameters u and
v, which define the positions of the S atoms in the unit cell. The positions of the basis
atoms in Bravais representation and units of (a, b, c) are as follows, with Fei (i = 1, .., 2)
and Sj (j = 1, .., 4) denoting the Fe and S atoms in the unit cell:
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Figure 9.1.: The iron marcasite structure with the S atoms indicated as yellow spheres
and the Fe atoms shown as red spheres. The lattice parameters a, b and c
define the size of the orthorombic unit cell and the internal parameters u and
v determine the positions of the S atoms within the cell. In the right panel the
(almost) octahedral and tetrahedral surroundings of the Fe and S atoms are
presented. The characteristic S dimers are clearly visible in the tetrahedrons.
This figure has been created with the program VESTA [130].
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(9.1)

The distance between the S atoms in the S dimer depends on the internal parameters u
and v via

dS−S =
√

4u2a2 + (1− 2v)2b2. (9.2)

The internal parameters have a strong influence on the electronic structure as it is also
the case in iron pyrite.
The structural parameters from experiment with a = 4.443 Å , b = 5.424 Å and

c = 3.387 Å for the lattice parameters and the internal parameters u = 0.200 and v = 0.378
have been used [150, 151]. A structural optimization within the GGA-PBE functional has
also been conducted, yielding a = 4.446 Å , b = 5.429 Å , c = 3.391 Å ,u = 0.206 and
v = 0.375. The optimized lattice parameters are in good agreement to the parameters
from experiment, exhibiting only about 0.3% deviation for the volume of the unit cell. In
difference to chapter 7 no particular section is devoted to the structural optimization of
iron marcasite in this thesis. A few details about it will be presented in the next section
about the computational details.
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9.3. Computational Details

The DFT calculations have been performed using the GGA-PBE functional. With a
plane-wave cutoff kmax = 3.9 a.u.−1, an angular momentum cutoff lmax = 8 for both
the Fe and S atoms, muffin tin radii of RFe

MT = 2.12 a.u. and RS
MT = 2.04 a.u., and a

10×8×14 k-mesh corresponding to 140 k-points in the irreducible Brillouin zone, the
calculations have been sufficiently converged. The inclusion of semicore states as local
orbitals (LOs) or higher-energy LOs has no significant influence on the results, and thus
they are not considered for the DFT calculations of FeS2 marcasite.
The G0W0@PBE calculations have been performed using a plane-wave cutoff kmax =

7.0 a.u.−1, an angular momentum cutoff lmax = 12 and a 4×4×4 k-mesh.1 The plane-
wave cutoff is still small enough to avoid numerical problems with linear dependencies
in the LAPW basis, but it allows to account for up to 2000 electronic bands in the GW
calculation. The convergence of the transition energies with respect to the number of
electronic bands behaves similar to iron pyrite (not shown). Again it is essential to include
the Fe 3s and Fe 3p semicore states as LOs into the LAPW basis, as well as to use five full
sets of s, p, d and f higher-energy LOs to avoid “ghost bands” in the unoccupied energy
spectrum and to reduce the linearization error, respectively.

The determination of the optimized structural parameters using the GGA-PBE functional
is more complicated for marcasite than for pyrite, since five parameters need to be optimized
instead of two. First, the volume abc of the unit cell has been optimized by varying the
lattice constant a, but keeping the ratio b/a and c/a as measured in experiment. Then
for a couple of volumes, including the optimized value the ratio b/a, has been varied.
There the lattice constant a is taken from the volume optimization, b is varied and c is
changed accordingly to keep the volume fixed. In a next step, the volume of the unit cell
for which the smallest total energy has been obtained in the b/a optimization is fixed and
the b/a-ratio is varied for a couple of lattice constants a. In the last step the optimized
set of structural parameters a, b/a, and c, which led to the smallest total energy, is used
as input for a structural relaxation to obtain the optimized values for u and v. For the
structural relaxation forces have been converged up to the order 10−4 Htr/a.u. and for
the minimization of the positions a Broyden-Fletcher-Goldfarb-Shanno algorithm has been
exploited.
The optical absorption of iron marcasite has been calculated using the scheme as

explained in appendix B. A 16×12×20 k-mesh leading to 693 k-points in the irreducible
wedge of the Brillouin zone guarantees convergence. For the Fe 3d-Fe 3d, Fe 3d-S 3p,
S 3p-Fe 3d and S 3p-S 3p orbital-resolved optical absorption the factors 21, 69, 70 and
148 have been obtained by minimizing the difference to the total optical absorption. A
smearing of 50 meV for the Lorentzian functions has been used for the optical absorption
presented in Fig. 9.4, whereas a tetrahedron method has been employed for calculating
the tail of the absorption presented in Fig. 9.5, which allows for an accurate determination
of the onset of the conduction band and the size of the optical band gap.

1A 5×4×6 k-mesh would have been more suitable, regarding the ratio of the lattice constants. However,
a 4×4×4 k-mesh yields sufficiently converged results for iron marcasite within GW .
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The iron marcasite structure belongs to the Pnnm group, and thus exhibits 8 symmetries,
including the inversion-symmetry.

9.4. Electronic Structure: DFT Results

The electronic band structure of iron marcasite shows an interplay between the bonding
and anti-bonding S 3s and 3p states arising from the covalent bonds in the S dimers and
the crystal-field splitting into Fe 3d t2g and Fe 3d eg states caused by the octahedral
symmetry of the structure. The hybridization between the S 3p and Fe 3d states is quite
incisive around the Fermi energy, and thus the main features of the electronic structure are
similar to iron pyrite. Since a detailed discussion about the connection of the geometry of
the iron pyrite structure and its electronic structure has been presented in chapter 7, and
there is nothing new in the case of iron marcasite, I will focus on the electronic structure
close-by around the Fermi energy only.

In Fig. 9.2 the orbital-resolved electronic structure of iron marcasite around the Fermi
energy is displayed. The band structure in the left panel is for the structural parameters from
experiment, whereas the optimized structural parameters are used in the band structure
of the right panel. The difference in the lattice parameters a, b and c has no significant
influence on the electronic structure, but the differences in the internal parameters u and
v lead to significant changes in the electronic structure, since they determine the distance
of the S atoms in the S dimer via eq. (9.2) like in pyrite, although the relative differences
of the parameters are only a few percent. The orbital character of the electronic bands at
the band edges is mainly dominated by Fe 3d character. The valence bands are quite flat,
whereas the conduction bands show slightly more dispersion. In the conduction bands the
S 3p character becomes evident around the high-symmetry k-points U , Y and in particular
at the lowest conduction band at Γ. Hence, the orbital character resembles those of iron
pyrite, with the difference, that the conduction band minimum (CBM) is not located at Γ
in the marcasite.

The fundamental band gap in iron marcasite is defined between the valence band
maximum (VBM) at a k-point close to X and the CBM at T . It is 0.80 eV and both
band edges are dominated by Fe 3d character, whereas the fundamental band gap in iron
pyrite has been between bands of different orbital character. However, like in iron pyrite
the direct transition at Γ in iron marcasite is between an Fe 3d rich state and a S 3p
state, exhibiting a considerably larger transition energy with 1.76 eV than the fundamental
band gap. The direct transition at Γ shows also the delicate dependence on the internal
parameters. Using the optimized structural parameters decreases the direct transition at
Γ to 1.55 eV, whereas the size of the fundamental band gap is almost unchanged. The
decrease of the gap size is caused by the larger distance of the S atoms in the S dimer for
the optimized structural setup.
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Figure 9.2.: The orbital-resolved band structure of iron marcasite is presented for the
structural parameters from experiment in the left panel and for the optimized
structural parameters in the right panel. The calculations have been done
within the GGA-PBE functional. The red color indicates Fe 3d orbital contri-
butions, whereas the S 3p character is displayed in black color. The size of
the points correlates to the size of the corresponding orbital character. The
high-symmetry k-points of the k-path are denoted according to the notation
of Bradley and Cracknell [131]. The direct band transition at Γ and the
smallest indirect transition, i.e. the fundamental band gap, are indicated as
blue arrows.

9.5. Electronic Structure: GW Results

In Fig. 9.3 the electronic band structure of FeS2 marcasite calculated within single-shot
GW on top of the GGA-PBE result is presented. In addition, the plain GGA-PBE result is
shown for comparison. The following discussion is supported by the table 9.1 listing the
transition energies for the transitions Γ→ Γ, X → Γ, R→ Γ and X → T .

The GW corrections of the Kohn-Sham energies are rather comparable to those of iron
pyrite, and thus the Fe 3d states at the band edges are considerably shifted, whereas the
S 3p state at Γ is only slightly corrected. Overall this leads to larger energy gaps between
the band edges, which are dominated by Fe 3d orbital character, but the transition energies
to Γ become smaller. Within GGA-PBE the fundamental band gap is located between a
k-point close to X and T . The energy of the transition between X and T is increased
from 0.95 eV to 1.40 eV after applying GW . Since additionally the S 3p band at Γ drops
down, the fundamental band gap is now between the VBM at a k-point close to Z and
the CBM at Γ with a size of 1.06 eV within GW (see Fig. 9.3), and thus interestingly not
only the size of the fundamental band gap is altered, but also its character is changed.
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Figure 9.3.: The electronic band structure of iron marcasite using the structural param-
eters from experiment within GGA-PBE (black dots) and G0W0@PBE (red
diamonds) is displayed. The blue arrow indicates the fundamental band gap
predicted by the GW calculation.

If we focus only on the size of the fundamental band gap, the GW approximation
behaves quite typical increasing the band gap from 0.80 eV to 1.06 eV. However, the more
detailed analysis presented in the previous paragraph revealed that the GW results of iron
marcasite have a lot in common with the GW results of iron pyrite presented in the last
chapter. In both cases the energy gap between Fe 3d states at the band edges is increased,
whereas the energy gap between the S 3p and Fe 3d states is reduced. In addition, the
treatment of the Fe 3s and Fe 3p semicore states as local orbitals is crucial, in particular
to describe the transitions between the bands of different orbital character, which exhibit
changes in the transition energies of about 0.5 eV for the different treatments.

9.6. Optical Absorption

In Fig. 9.4 the optical absorption of iron marcasite calculated within the GGA-PBE
functional is presented. In addition, the optical absorption is decomposed into the orbital-
contributions from the Fe 3d-Fe 3d (red dashed), Fe 3d-S 3p (blue dotted), S 3p-Fe 3d
(green dashed-dotted) and S 3p-S 3p (yellow striped) transitions, which are the dominant
transitions up to a photon energy of 6 eV.
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Γ→ Γ X → Γ R→ Γ X → T
GGA-PBE 1.76 1.32 1.57 0.95
G0W0 (w) 1.40 1.19 1.21 1.40
G0W0 (w/o) 1.88 1.57 1.72 1.25

Table 9.1.: The energies of the transitions Γ→ Γ, X → Γ, R→ Γ and X → T for iron
marcasite within GGA-PBE and G0W0@PBE are listed. The G0W0 calculations
have been carried out with (w) and without (w/o) the inclusion of the Fe 3s
and Fe 3p semicore states as local orbitals into the LAPW basis to evaluate the
numerical sensitivity. The structural parameters from experiment have been
used.

The optical absorption is comparable in size to iron pyrite with maximal values of about
14 · 105 cm−1. There are plenty of peaks in the optical absorption, but I will only focus
on the two major peaks A and B, one located at about 1.3 eV and the other at about
2.5 eV. The main contribution to these two peaks comes from the Fe 3d-Fe 3d transitions,
however there is also a significant contribution from the Fe 3d-S 3p transitions and S
3p-Fe 3d transitions. The optical absorption for photon energies between 3.5 to 6 eV is
dominated by S 3p-Fe 3d transitions and to a smaller extent by S 3p-S 3p transitions.

The sum of the four orbital-decomposed contributions exhibits some deviations compared
to the total optical absorption. A smearing for the Lorentzian functions with a full width
at half maximum of 50 meV has been used for all curves. The difference between the
total absorption and

∑
αµν(ω) seems to be caused by additional orbital contributions to

the optical absorption, which are quite featureless in the energy range up to 6 eV, but
lead to an overall smoother optical absorption. Interestingly, the agreement between the
sum of the four orbital-decomposed optical absorptions and the total optical absorption
is excellent for iron pyrite (cf. Fig. B.2). An explanation of these results might be the
following: Since the orbital-decomposed absorption is calculated via joint density of states
(see appendix B), the Fe 3d states are strongly filtered by this method due to the large
contribution to the DOS in iron pyrite and marcasite. In iron pyrite the band edges are
quite flat and are strongly dominated by Fe 3d states, which applies only to a lesser extent
to iron marcasite. Thus, it might be that the optical absorption within the energy range
up to 6 eV comprises solely of the joint density of states of the Fe 3d transitions to a good
approximation for iron pyrite, but not for iron marcasite.
The low energy tail of the absorption is dominated by Fe 3d-Fe 3d transition, which

is expected, since the band edges of iron marcasite are dominated by Fe 3d states. In
difference to iron pyrite no significant contribution from Fe 3d-S 3p transitions can be
observed in the tail. In Fig. 9.5 (αω)n is plotted within the energy range from 1.0-1.3 eV,
where the tail of the absorption is located. An exponent of n = 1/2 assumes an indirect
allowed transition of the optical band gap, whereas n = 1/3 assumes a forbidden indirect
transition. The artificial broadening of the Lorentzian functions in the calculation of the
optical absorption makes it difficult to determine the absorption edge for iron marcasite
(not shown), and thus a tetrahedron method has been used for the results in Fig. 9.5,
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Figure 9.4.: The optical absorption of iron marcasite calculated within GGA-PBE and using
the structural parameters from experiment is displayed for photon energies
up to 6 eV by the black solid line. The orbital decomposition of the optical
absorption into transitions between Fe 3d-Fe 3d (red dashed), Fe 3d-S 3p
(blue dotted), S 3p-Fe 3d (green dashed-dotted) and S 3p-S 3p (yellow
striped) is also shown. The factors for the orbital-decomposed contributions
(cf. appendix B) have been determined to 21, 69, 70 and 148, respectively.
For comparison the sum of the orbital-decomposed contributions using these
factors is presented as black dashed curve (labeled

∑
αμν(ω)). The first two

major peaks are denoted as A and B.

instead.2 Note that no low-intensity contributions are present in the tail of the absorption,
leading to a clearly defined absorption edge at about 1.1 eV, and thus there are no problems
in determining the optical band gap by linear interpolation schemes. It is about 1.1 eV
for both cases assuming an indirect allowed or forbidden transition. On the other hand,
note that in iron pyrite the absorption edge could not be simply identified due to the
low-intensity d-p contributions (see Fig. 7.10).3

2Note that there have been still some unsolved minor numerical problems in the tetrahedron method,
just before submission of this thesis, regarding the agreement between the integral over the absorption
using the tetrahedron method and the approach using Lorentzian functions. Hence, the results on
the tail of the optical absorption might exhibit slight inconsistencies compared to those in Fig. 9.4.
However, the peak positions and slopes are in nice qualitative agreement, and thus the determined
optical band gap should be sufficiently accurate (0.1 eV accuracy).

3The clear absorption edge in iron marcasite is not only a result of employing the tetrahedron method,
but also results from missing low-intensity contributions. In the case of iron pyrite for both, the
tetrahedron method, and the approach using Lorentzian functions, the optical absorption exhibits
a low-intensity tail, which makes it hard to determine an optical band gap. Since the tetrahedron
method exhibits minor numerical problems (see above), I refrained from presenting results for the
optical absorption using this method, wherever possible, and thus the absorption tail of iron pyrite in
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Figure 9.5.: The tail of the optical absorption of iron marcasite in the range of 1.0 to
1.3 eV has been examined in case of an allowed indirect transition (n = 1/2,
black curve) and in case of a forbidden indirect transition (n = 1/3, blue
curve) for the optical band gap. The left y-axis corresponds to the black curve,
whereas the right y-axis is valid for the blue curve. The linear fits indicate the
relevant band edges for the determination of the optical band gaps from the
two curves.

A comparison with literature reveals a reasonable agreement for the major peak positions
of the optical absorption of iron marcasite [33], however, the size of the optical absorption
is smaller with about 5 · 105 cm−1. Note that the samples used in this reference are not
phase-pure, but only a 50% marcasite content in volume could be realized.

9.7. Conclusions

The electronic structure and the optical absorption of iron marcasite have been investigated
in this chapter using DFT within the GGA-PBE functional and single-shot GW on top of
the DFT result.
The octahedral symmetry and the covalent bond of the S atoms in the S dimers of

the marcasite structure determine the electronic structure of iron marcasite. The band

Fig. 7.10 is calculated using the Lorentzian functions.
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edges around the Fermi energy are dominated by Fe 3d states, but there is a significant
hybridization with S 3p around some high-symmetry points. In particular at Γ there is a
S 3p rich conduction band as it is also the case in iron pyrite. The fundamental band
gap is 0.80 eV within GGA-PBE, it is indirect and it is located between a k-point close
to X (VBM) and at T (CBM). The orbital character of the VBM and CBM is in both
cases Fe 3d. When applying G0W0@PBE, the energy gaps between the Fe 3d states at
the band edges are considerably increased, leading not only to a change of the size of the
fundamental band gap but also its character. The fundamental band gap calculated within
G0W0@PBE to 1.06 eV is located between the VBM at a k-point close to Z exhibiting Fe
3d character and the CBM at Γ with S 3p character, and thus the band gap is between
states of different orbital character like in iron pyrite.
The optical absorption of iron marcasite is dominated by Fe 3d-Fe 3d transitions for

the lower photon energies, and in difference to the absorption in iron pyrite, there are no
significant low-intensity contributions from Fe 3d-S 3p transitions for the lower energies.
Thus, the tail allows a much simpler determination of the size of the optical band gap
compared to the case in iron pyrite. The optical band gap is about 1.1 eV, and thus 0.3 eV
larger than the fundamental band gap. Note that these results have been only calculated
using the GGA-PBE functional, and a low-intensity tail in the optical absorption might
be present using the G0W0@PBE result, since then the fundamental band gap is defined
between Fe 3d and S 3p states instead.

The optical absorption of iron marcasite is comparable in amplitude to the absorption of
iron pyrite. Since both, for GGA-PBE and GW , the fundamental band gap is sufficiently
large, FeS2 marcasite qualifies for photovoltaic applications from the theoretical point of
view. In the quite recent literature, there are indications of a strong optical absorption
and an at least as large band gap size as in iron pyrite also in experiment [33].
However, iron marcasite is reported to be thermodynamically less stable compared to

iron pyrite [152], which might pose problems for photovoltaic applications.4 Additionally,
there is not much known about the role of defects for the photovoltaic performance of
iron marcasite yet to my knowledge.
To conclude the iron marcasite phase seems to deserve a thorough examination of its

suitability for photovoltaic applications, and hopefully there will be more experimental and
theoretical investigations on this phase in the near future.

4The GGA-PBE functional predicts the iron marcasite phase to be more stable with 20 meV/f.u., which
is a quite small energy difference, and thus this might explain the frequently observed coexistence
of those two phases. However, the thermodynamic stability of marcasite and pyrite depends on the
choice of exchange-correlation functional as it is reported in [29].
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10. The Electronic Structure of
other Pyrite and Marcasite
Compounds

10.1. Introduction

The results on the band gap size of iron pyrite and iron marcasite in the chapters 7,
8 and 9 are quite remarkable. The hybrid functionals lead to a drastic overestimation
of the band gap size in iron pyrite compared to the experimental value. Furthermore,
even more surprising, the application of the more sophisticated G0W0 method yields an
unconventional reduction of the energy gap between the Fe 3d and S 3p states at the band
edges in iron pyrite and iron marcasite, leading even to a significant reduction of the band
gap size compared to the GGA-PBE result in pyrite. According to common experience a
“conventional” DFT calculation underestimates the band gap size of semiconductors, which
then is usually remedied by the G0W0 approach and in some cases by the application of
the HSE functional. However, the example of FeS2 shows that this is not a strict rule.

In this chapter I would like to shed some light on this peculiar behavior by investigating
a couple of pyrite and marcasite compounds. This is achieved by comparing the electronic
structures of these compounds, and thus validate the influence of the geometrical structure,
the electronic filling or the localization of bands. The isoelectronic pyrite compounds FeS2,
RuS2, OsS2 and NiP2 are investigated as well as ZnS2 in the pyrite structure with two
more electrons per Zn atom. For the marcasites, the isoelectronic structures FeS2, FeSe2

and FeTe2 have been used. For all these compounds “conventional” DFT, the HSE06
functional and G0W0@PBE are compared.

The focus in this chapter lies on the investigation of the band gaps within those methods
and less on the application for photovoltaics. Though, knowing the size of the band
gaps allows to choose a first selection of suitable materials for photovoltaics, detailed
investigations of the optical absorption or of the occurring surfaces as it is done for iron
pyrite in this thesis are necessary for a thorough discussion of the photovoltaic performance.

10.2. Computational Details

In table 10.1 the structural parameters of the investigated pyrite and marcasite compounds
are listed. In the case of the simple cubic pyrite structure this are the lattice constant a
and the Wyckoff parameter u (see Fig. 7.1), and for the orthorombic marcasite structures
the lattice constants a, b and c, and the internal parameters u and v (see Fig. 9.1) are
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a b c u v Ref.

Pyrites

FeS2 5.418 5.418 5.418 0.385 - [51]
RuS2 5.610 5.610 5.610 0.388 - [153]
OsS2 5.620 5.620 5.620 0.387 - [153]
NiP2 5.471 5.471 5.471 0.388 - [154]
ZnS2 5.954 5.954 5.954 0.401 - [45]

Marcasites
FeS2 4.443 5.424 3.387 0.200 0.378 [150, 151]
FeSe2 4.804 5.784 3.586 0.213 0.369 [155]
FeTe2 5.266 6.268 3.874 0.224 0.362 [150]

Table 10.1.: The structural parameters for the pyrite compounds FeS2, RuS2, OsS2, NiP2,
ZnS2 and for the marcasite compounds FeS2, FeSe2 and FeTe2 are listed. The
pyrite and marcasite structure are displayed in Fig. 7.1 and 9.1, respectively.
For the pyrite compounds the lattice parameter a (a=b=c) and the Wyckoff
parameter u are needed, and for the marcasite compounds the lattice param-
eters a, b and c, and the internal parameters u and v are presented. The
lattice parameters are all in units of Å. All the structural parameters are from
experiments and the corresponding references are listed in the last column.

listed. The parameters are taken from experiments with the references listed in the table
as well.

The “conventional” DFT calculations have been performed using the Fleur code [66]
within the GGA-PBE functional. The numerical parameters are quite similar to those used
for the iron pyrite and iron marcasite compound (see chapter 7 and 9). The values for the
plane-wave cutoffs kmax, the muffin tin radii RMT and the angular momentum cutoffs lmax

are listed in table 10.2. Since there are small differences in the muffin tin radii depending
on the compound, and as a rule of thumb kmaxRMT ≈ lmax is used, the plane-wave cutoff
ranges from about 3.9-4.2 a.u.−1 for the pyrites, and 3.3-3.9 a.u.−1 for the marcasite
compounds. The k-mesh has been chosen to 4×4×4 for all systems, which is sufficient for
convergence, as already discussed in appendix D. No semicore states have been included
as local orbitals into the LAPW basis for the “conventional” DFT calculations, neither
have higher-energy local orbitals been included.

For the calculations using the hybrid functional HSE06 the same numerical parameters
have been used as for the GGA-PBE calculations. The number of electronic bands
considered in the computation has been at least 10-times the number of electrons, i.e. 800
bands for all pyrite compounds, except ZnS2 with 960 bands, and 400 bands for the
marcasites.
For the single-shot GW calculations on top of the GGA-PBE results computed within

the Spex code [69] the convergence is very subtle as already discussed for iron pyrite and
iron marcasite in the previous chapters. Hence, the plane-wave cutoff has been increased
to 6.0 a.u.−1 for all systems1 and lmax has been adjusted according to the equation
kmaxRMT ≈ lmax. At least 64 additional basis functions per atom have been included via

1Except for ZnS2 where kmax = 5.0 a.u.−1 had to be used, since larger cutoffs led to numerical problems.
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AB2 kmax RA
MT RB

MT lAmax lBmax sc LOs

Pyrites

FeS2 4.0 2.23 1.98 8 8 Fe 3s, 3p
RuS2 3.9 2.37 2.00 8 8 Ru 4s, 4p
OsS2 3.9 2.34 2.03 8 8 Os 5s, 5p
NiP2 4.0 2.31 1.95 8 8 Ni 3s, 3p
ZnS2 4.2 2.80 1.88 10 8 Zn 3s, 3p

Marcasites
FeS2 3.9 2.12 2.04 8 8 Fe 3s, 3p
FeSe2 3.6 2.18 2.18 8 8 Fe 3s, 3p
FeTe2 3.3 2.35 2.35 8 8 Fe 3s, 3p

Table 10.2.: The numerical parameters for the DFT calculations within the GGA-PBE and
HSE06 functional for the pyrite and marcasite compounds (AB2). Listed are
the plane-wave cutoff kmax (in a.u.−1), the muffin tin radii RA

MT and RB
MT

(in a.u.), and the angular momentum cutoffs lAmax and lBmax. The k-points
and the parameters for the G0W0@PBE calculation are specified in the text,
except of the semicore states (sc), which have been included as local orbitals
(LOs) in the GW calculations, which are listed in the last column.

higher-energy local orbitals, i.e. at least four full s, p, d, f shells per atom have been
added. Thus, we are able to obtain a sufficient number of electronic bands to converge
the GW calculation. I expect the convergence of the transition energies with the number
of bands to be quite similar to the case in iron pyrite as displayed in Fig. 8.1 (or at least
not much worse), and thus 2000 electronic bands should guarantee convergence. Again,
the inclusion of the highest lying semicore states of the cation as local orbitals into the
LAPW basis is crucial to obtain the right results.

10.3. GGA-PBE Results

In this section the electronic structures of the pyrite and marcasite compounds calculated
within the GGA-PBE functional are discussed.

Pyrites In Fig. 10.1 the electronic band structures of the pyrite compounds FeS2, RuS2,
OsS2, NiP2 and ZnS2 are displayed. The d character of the cations, i.e. Fe 3d, Ru 4d, Os
5d, Ni 3d and Zn 3d, and the p character of the anions, i.e. S 3p and P 3p, are shown in
red and black, respectively. The FeS2 pyrite band structure has been already extensively
discussed in chapter 7, and it is only presented for comparison. The isoelectronic pyrite
compounds RuS2 and OsS2 exhibit quite similar features in the electronic structure as
iron pyrite. The valence bands are dominated by Ru 4d and Os 5d states and also the
conduction states exhibit considerable d character. However, there is a single S 3p state
defining the conduction band minimum (CBM) at Γ as it is the case in iron pyrite. The
fundamental band gap is defined between the valence band maximum (VBM) close to X
and the CBM at Γ, and thus it is a transition between a d and a p state. The size of
the fundamental band gap is 0.62 eV in FeS2, 0.71 eV in RuS2 and 0.14 eV in OsS2. The
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10. The Electronic Structure of other Pyrite and Marcasite Compounds

Figure 10.1.: The orbital-resolved electronic band structures of the pyrites FeS2 (upper
left), RuS2 (upper center), OsS2 (upper right), NiP2 (lower left) and ZnS2

(lower center) using the structural parameters from experiment listed in
table 10.1. In red the cation d character is depicted and in black the p
character of the anion is shown.

size of the fundamental band gap strongly depends on the structural parameters, in which
the Wyckoff parameter u plays a crucial role. This will be discussed in detail later in the
chapter.
In difference to iron pyrite the S 3p character in the conduction bands up to 2-3 eV is

much more pronounced in RuS2 and OsS2. In addition, the localization and flatness of the
t2g states in the valence bands, which is connected to the inverse of the bandwidth of those
states, decreases from FeS2 with about 1.2 eV bandwidth (see Fig. 7.2), to RuS2 with
1.8 eV to OsS2 with about 2 eV bandwidth (latter two not shown). Hence, the electronic
screening is expected to decrease from FeS2 to RuS2 to OsS2, supported by the calculation
of the static dielectric constant yielding about 20, 17 and 16, respectively (see table 10.3).
The electronic structure of NiP2 and ZnS2 exhibit quite some differences compared

to iron, ruthenium and osmium pyrite. Although NiP2 is isoelectronic to iron pyrite, the
states directly below the Fermi energy are dominated by P 3p states, whereas Ni 3d states
(with a strong admixture of P 3p) appear just above the Fermi energy. All these bands
are much more delocalized compared to those in iron pyrite. The NiP2 pyrite compound is
(semi-)metallic within the GGA-PBE functional.
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Figure 10.2.: The size of the fundamental band gap of FeS2 (red diamonds), RuS2 (black
dots), OsS2 (green dots) and ZnS2 (blue triangles) in the pyrite structure is
displayed depending on the Wyckoff parameter u. The star-shaped markers
indicate the results for the structural parameters from experiment listed in
table 10.1. The calculations for larger u values for RuS2 did not converge.

The ZnS2 compound exhibits two more electrons per Zn atom compared to the other
investigated pyrite compounds, and thus the Zn 3d states are fully occupied, leading to
band edges, which are mainly dominated by S 3p states. There is no significant contribution
from Zn 3d states, instead Zn 4s states appear close to the conduction band edges (not
shown). Therefore, the orbital character of the band edges in ZnS2 is quite similar to
that of simple semiconductors. In addition, the bands exhibit a parabolic behavior at the
valence and conduction band edges, and thus the common approaches to determine the
optical band gap in ZnS2 by means of applying a linear regression to the tail of the optical
absorption should work much better here than for FeS2 (see chapter 7). The size of the
fundamental band gap in ZnS2 is calculated to 1.40 eV within the GGA-PBE functional.
As already adumbrated in the last paragraph and discussed for iron pyrite in chapter 7,

the structural parameters have a strong influence on the electronic band structure and on
the size of the fundamental band gap. This is illustrated in Fig. 10.2, where the dependence
of the fundamental band gap in FeS2, RuS2, OsS2 and ZnS2 on the Wyckoff parameter
u is shown. Since the band gap in FeS2, RuS2 and OsS2 is defined between cation d
states and S 3p states, it changes in the case of a relative shift between these states.
Such a shift might occur when the bonding/anti-bonding splitting between the S p states
changes. This, on the other hand, directly depends on the Wyckoff parameter u, since the
distance between the S atoms in the S dimers of the pyrite structure is defined according
to Eq. (7.2). Thus, a smaller Wyckoff parameter leads to a larger bonding distance in the
S dimers (for a fixed lattice constant), which then causes a smaller bonding/anti-bonding

109



10. The Electronic Structure of other Pyrite and Marcasite Compounds

Figure 10.3.: The orbital-resolved electronic band structures of the marcasites FeS2 (left),
FeSe2 (center) and FeTe2 (right), where the Fe 3d character is shown in red
and the anion p character is depicted in black. The structural parameters
from experiment are used, which are listed in table 10.1.

splitting between the S p states and leads to a smaller band gap. Below a certain u the
pyrite compound becomes even metallic, since the S 3p state at the CBM penetrates the
valence bands (see also Fig. 7.6).

There is a linear dependence of the band gap size on u as long as the band gap is still
defined by the cation d states at one edge and the S 3p states at the other edge. The
gradient of the linear curve is quite similar for FeS2, RuS2, OsS2 and ZnS2, which shows
that it mainly depends on the structure and not on the chemical composition. However,
the size of the fundamental band gap depends on both. For instance RuS2 and OsS2

have similar lattice constants and Wyckoff parameters according to experiment as listed in
table 10.1 (the star-shaped markers in the figure indicate the structural parameters from
experiment), but the size of the band gap differs by almost 0.6 eV. For the same Wyckoff
parameter the band gap size decreases in the order from FeS2 to RuS2 to OsS2, which
is consistent with the conventional wisdom that the band gap of semiconductors usually
decreases when substituting the atoms with heavier elements from the same chemical
group. Since ZnS2 has a different electron filling, and thus exhibits significant differences
in the electronic structure, it does not fit into this picture.

Note, that the linear dependence of the band gap size on u is also valid for values of u
below the limit where the compound becomes metallic, when defining negative band gaps,
which is not done in this thesis. For larger Wyckoff parameters there is a saturation effect
observable, which is caused as soon as the band edges defining the band gap obtain the
same orbital character, which are either cation d (in FeS2, RuS2 and OsS2) or S 3p states
(in ZnS2). Then, an increase of u has no significant influence on the band gap size, since
the states at the VBM and CBM experience the same energy shift.

Marcasites In Fig. 10.3 the orbital-resolved electronic band structures of the marcasite
compounds FeS2, FeSe2 and FeTe2 are displayed. In red color the Fe 3d character is
shown, and black color is used for the anion p character, i.e. S 3p, Se 4p and Te 5p. The
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electronic structure of FeS2 marcasite has already been discussed in detail in chapter 9
and is only shown for comparison in the figure, but nevertheless let me briefly summarize
the essential features. The FeS2 marcasite band structure exhibits a couple of similarities
when compared to the band structure of iron pyrite, as for instance the flat Fe 3d states
at the valence band edge and as a dominant contribution at the conduction band edge.
There is a considerable S 3p contribution at the conduction band edge at Γ like in iron
pyrite. However, in difference to iron pyrite the fundamental band gap within GGA-PBE is
defined between states of mainly Fe 3d character.
The FeSe2 and FeTe2 compounds show basically the same features in the electronic

structure, but the anion p character is not located at the conduction band edge, but is
now at higher energies around Γ (0.4 eV higher in FeSe2 and 0.8 eV in FeTe2), whereas
the conduction band edge at Γ is of Fe 3d character. On the other hand, the character
of the VBM close to X obtains increasing anion p character when going from FeS2 to
FeSe2 to FeTe2. Hence, in FeSe2 and FeTe2 there is a reversed situation compared to
FeS2 marcasite for the fundamental band gap, which is defined between a mainly p state
at the VBM and a d state at the CBM located at T . The size of the fundamental band
gap computed within the GGA-PBE functional is 0.80 eV for FeS2 marcasite, 0.28 eV for
FeSe2 and FeTe2 is predicted to be a (semi-)metal.

Note, that all the calculations have been performed in the scalar-relativistic approximation,
and thus no spin-orbit coupling (SOC) has been considered. A test calculation for FeS2,
RuS2 and FeTe2 including SOC yields no significant change of the band gap and the
shape of the band structure. However, in the case of OsS2 the inclusion of SOC has a
considerable influence on the size of the band gap due to the large mass of the Os atoms
(Z = 76). The band gap is reduced by about 0.05 eV including SOC, making OsS2 within
the GGA-PBE functional almost metallic with a band gap of 0.09 eV.

10.4. GW Results

The G0W0@PBE results for the pyrites and marcasites are discussed in this section.

Pyrites In Fig. 10.4 the electronic band structures of the pyrite compounds FeS2, RuS2,
OsS2, NiP2 and ZnS2 are shown using the GW approximation. For comparison the
GGA-PBE results are also displayed. Note, that the orbital character of the bands does not
change when applying G0W0, and thus I refer to Fig. 10.1 displaying the orbital-resolved
band structure within GGA-PBE.

The GW results of iron pyrite have been discussed in detail in chapter 8. Hence, I will
only present a brief summary. The application of GW on top of the GGA-PBE results
slightly increases the energy gap between the Fe 3d t2g valence states and the Fe 3d eg
conduction states, but the S 3p conduction state around Γ drops down,2 which reduces

2Note that the Fe 3d states are considerably corrected when applying GW , yielding a positive energy
shift for both the Fe 3d valence as well as the conduction states. On the contrary the S 3p states
experience only slight GW corrections, and thus, by adjusting the Fermi energy to the top of the
valence band, it seems as the S 3p state are influenced most by GW , which is actually not the case.
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Figure 10.4.: The electronic band structures of FeS2 (upper left), RuS2 (upper center),
OsS2 (upper right), NiP2 (lower left) and ZnS2(lower center) pyrite calculated
within G0W0@PBE (red diamonds). For comparison the “plain” GGA-PBE
results are also shown as black dots. The pyrites have been calculated using
the structural parameters from experiment as listed in table 10.1. The sizes of
the fundamental band gaps within GGA-PBE and GW are listed in table 10.3.
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the size of the fundamental band gap from 0.62 eV to 0.27 eV. Iron pyrite is the only
investigated pyrite compound, where this unconventional reduction of the band gap size
occurs to such an extent. However, RuS2 and OsS2 behave quite similar when applying
GW . The energy gap between the Ru 4d and Os 5d states at the band edges is slightly
increased, whereas the S 3p conduction state around Γ remains almost at the former
energy position. Overall this leads to a small correction of the fundamental band gap
within GW , i.e. from 0.71 eV to 0.77 eV in RuS2 and from 0.14 eV to 0.25 eV in OsS2.
The combination of a strong electronic screening and the p-d character of the band edges
is presumably the reason for this peculiar behavior in FeS2, RuS2 and OsS2, which will be
discussed in detail in the next section.
The GW results of NiP2 and ZnS2 pyrite are quite different compared to FeS2, RuS2

and OsS2 due to the different orbital character at the band edges. In NiP2 and ZnS2 both
band edges comprise of mainly P 3p and S 3p states, respectively, and the fundamental
band gap is between states of similar orbital character (see Fig. 10.1), and thus the GW
correction behaves like for simple semiconductors. The energy gap between the 3p valence
and conduction states is significantly increased, leading to an opening of the fundamental
band gap from 1.40 eV to 2.38 eV in ZnS2 and making the metallic NiP2 within GGA-PBE
to a semiconductor with a 0.39 eV band gap. The main effect when applying GW is an
almost rigid shift of the bands in NiP2 and ZnS2, indicating that a DFT+U approach
might lead to similar results.

The shape of the band structures of all investigated pyrites is not significantly altered by
GW . Note that all calculations have been carried out without SOC, since no significant
changes are expected for the band structures (see last section), except for OsS2. In OsS2

a similar reduction of the fundamental band gap of about 0.05 eV as it is the case using
the GGA-PBE functional is expected within GW .

Marcasites In Fig. 10.5 the band structures of FeS2, FeSe2 and FeTe2 marcasite are
displayed using G0W0@PBE and, for comparison, using a “plain” GGA-PBE calculation.
For the orbital character of the bands I refer to Fig. 10.3 showing the results within
GGA-PBE, since it does not change upon applying single-shot GW .

The essential features of the band structure of FeS2 marcasite are only briefly discussed
in the following, and I refer the reader to chapter 9 for more details. In difference to iron
pyrite, the fundamental band gap of FeS2 marcasite within GGA-PBE is defined between
states of mainly Fe 3d character, whereas the S 3p band at Γ is located at higher energies.
However, the GW corrections of the bands behave similar to those in iron pyrite, i.e. the
energy gap between the valence and conduction Fe 3d states is increased, and the S 3p
conduction state at Γ drops down. As a consequence the band gap does not only change
the size upon applying GW , but also the character is altered. Within GGA-PBE the band
gap is defined between Fe 3d states close to X and T , whereas in GW the VBM is an Fe
3d state close to Z and the CBM the S 3p state at Γ.
For FeSe2 and FeTe2 marcasite the main features of the band structure are the same,

however, the Se 4p and Te 5p state at Γ are located at higher energies, and thus they are

The same is valid for the other pyrite compounds.
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Figure 10.5.: The electronic band structure of FeS2 (left), FeSe2 (center) and FeTe2
marcasite (right) using the structural parameters from table 10.1 within the
G0W0@PBE (red diamonds) and “plain” GGA-PBE calculation (black dots).
The sizes of the fundamental band gaps within GGA-PBE and GW are listed
in table 10.3.

not lying at the band edge within GGA-PBE. When applying GW the p state approaches
the conduction band edge in both case. In the case of FeSe2, where the p band has been
already close to the band edge within GGA-PBE, it even becomes a state at the band
edge. For both marcasites the CBM is still an Fe 3d state at T , whereas the VBM in
FeSe2 changes from a Se 4p state close to X to an Fe 3d state between Z and Γ using
GW , since the Se 4p state at the valence band edge drops down. In FeTe2 the VBM is
still a Te 5p state close to X. Overall this leads to an opening of the band gap in FeSe2
from 0.28 eV within GGA-PBE to 0.84 eV within GW , and FeTe2 predicted to be metallic
within GGA-PBE obtains a band gap of 0.58 eV.
To conclude the application of GW on the investigated pyrites and marcasites behaves

quite similar in all cases, with the difference that, depending on the band character of the
band edges, the unconventional behavior of the GW correction is more (FeS2, RuS2 and
OsS2 pyrite) or less obvious (marcasites, NiP2 and ZnS2 pyrite).

10.5. HSE06 Results and Comparison with

Experiment

After having discussed in detail about the orbital decomposition of the pyrite and marcasite
compounds, and its influence on the GW results, I will compare the band gaps calculated
within GGA-PBE and GW to experiment. In addition, the HSE06 results are presented
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PBE HSE06 GW PBE G0W0 exp. ε(ω = 0)
Pyrites X → Γ εgap

FeS2 0.64 2.34 0.31 0.62 0.25 0.95 [13] 20
RuS2 0.72 1.78 0.79 0.71 0.77 1.3 [156] 17
OsS2 0.17 0.99 0.28 0.14 0.25 2.0 [156] 16
NiP2 1.00 1.43 1.58 0 0.39 - -
ZnS2 2.11 3.21 3.15 1.40 2.38 2.5 [45] 8

Marcasites X → T εgap

FeS2 0.95 2.82 1.47 0.80 1.06 0.34 [32] 19
FeSe2 0.52 2.15 1.00 0.28 0.84 0.5-1.0 [157] 24
FeTe2 0.44 1.68 0.89 0 0.58 0.2-0.5 [157] -

Table 10.3.: The transition energy (in eV) between the states at the valence and conduction
band edge for X → Γ for the pyrite compounds FeS2, RuS2, OsS2, ZnS2 and
NiP2 and for the transition X → T for the marcasite compounds FeS2, FeSe2

and FeTe2. The calculations have been performed within the GGA-PBE and
HSE06 functional, and the G0W0@PBE method. The structural parameters
from experiment as listed in table 10.1 are used for the calculations. In
addition the size of the fundamental band gap εgap is listed for the same
compounds using GGA-PBE and G0W0@PBE. For comparison the experimen-
tally determined band gaps and the corresponding references are presented,
if available. Note that the structural parameters given in those references
and the references of table 10.1 might be different. The last column lists the
electronic contribution to the static dielectric constant ε(ω = 0) calculated
within the GGA-PBE functional. For NiP2 and FeTe2 the static dielectric
constant is not listed, since the systems are predicted to be (semi-)metallic
within the GGA-PBE functional.

and also included into this comparison.
In table 10.3 the fundamental band gaps calculated within GGA-PBE and G0W0@PBE

for the pyrites FeS2, RuS2, OsS2, NiP2 and ZnS2, and the marcasites FeS2, FeSe2 and
FeTe2 are listed. The experimentally measured band gaps are also presented with the
corresponding references. However, note that except for FeS2 pyrite there is not much
“high-quality” literature about the band gaps of these compounds. For instance for ZnS2

the band gap is only estimated to be at least 2.5 eV due to the bright yellow appearance
of the crystals, and for FeSe2 and FeTe2 the band gaps are estimated to be in the listed
range by using temperature-dependent electrical resistivity measurements, which are very
sensitive to defects. To allow a better comparison of the results, the fundamental band
gap sizes are also displayed in Fig. 10.6 in a bar plot.
Since the calculation of electronic band structures within hybrid functionals are not

straight-forward, I have only calculated the transition energy of some specific transitions
between high-symmetry k-points in this case. In order to compare the HSE06 results to
those calculated within the GGA-PBE functional and G0W0@PBE, the transition energies
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Figure 10.6.: The calculated fundamental band gaps within the GGA-PBE functional
(black) and G0W0@PBE (red) are compared to the band gaps measured in
experiment (yellow) for the pyrite compounds FeS2, RuS2, OsS2 and ZnS2,
and the marcasites FeS2, FeSe2 and FeTe2. The values as listed in table 10.3
are used.

for X → Γ for the pyrites and X → T for the marcasites are listed in table 10.3. In this
case a comparison with experiment is not straight-forward, and only estimations about the
agreement between the HSE06 results and experiment can be drawn.
In the case of NiP2 and ZnS2, where the orbital character of the band edges is quite

different as compared to the other compounds (see previous sections), there is a good agree-
ment between the transition energy of X → Γ calculated within HSE06 and G0W0@PBE.
Since the fundamental band gap of ZnS2 calculated within G0W0@PBE is in nice agree-
ment with the (estimated) size of the band gap from experiment, it should be not too
far-fetched to conclude that also the HSE06 calculation might be in good agreement with
the experimentally determined band gap. Thus, the band gaps of ZnS2 and NiP2 behave
quite as expected, i.e. like simple semiconductors (see appendix A), when applying GW or
hybrid functionals. This means there is a significant opening of the band gap compared to
the gap within “plain” GGA-PBE improving the agreement with experiment.
For all other compounds the application of hybrid functionals or GW leads to less

expected results. The transition energies calculated within HSE06 are much larger compared
to the GGA-PBE and the GW results. In particular for FeS2 pyrite and the marcasites
FeS2, FeSe2 and FeTe2 the band gaps increase by almost 200-300%. The band gaps
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within HSE06 are also much larger than those from experiment, indicating that the HSE06
functional is not suited to describe these compounds.
It is known that the HSE06 functional fails to describe systems with a large screening

(in the extreme case metals), and thus I calculated the static dielectric constants of the
compounds, which are listed in table 10.3.3 The ZnS2 compound with small dielectric
constant is well described within HSE06, whereas the other compounds exhibiting dielectric
constants around 20 are not. These large values for the static dielectric constants are
caused by the localized d states at the band edges. It might be that a modified HSE06
approach using ε−1(ω = 0) instead of 0.25 as Hartree-Fock mixing parameter leads to
improved results for the band gaps (c.f. [90, 91]). In this case the exchange contribution
is mainly dominated by the GGA-PBE exchange.

Let me focus on the pyrites FeS2, RuS2 and OsS2 now. The GW correction on top of
the GGA-PBE band gaps is quite small in all three cases, exhibiting even a reduction of the
size of the band gap in FeS2. What might be the reason for this small correction or even
reduction of the band gap size? - In a simplified picture the GW correction comprises
of two major corrections of the self energy, one for the exchange denoted as Σex in the
following and another in the screening (correlation) denoted as Σcor. The correction Σex

opens the band gap, whereas Σcor tends to reduce the band gap size. In a typical simple
semiconductor like Si Σex is considerably larger than Σcor leading in total to an opening of
the band gap. Since the screening is connected to the size of the static dielectric constant,
it is quite large in FeS2, RuS2 and OsS2, which might lead to a situation, where Σcor is as
large as Σex or even larger. Then, as a consequence the size of the band gap decreases
compared to the GGA-PBE result. Up to now these are only “hand-waving” arguments,
but I plan to investigate this peculiar behavior in more detail in the future.

The reported experimentally measured band gaps of about 1, 1.3 and 2 eV for FeS2, RuS2

and OsS2 do not agree with the calculated results, both in size as well as the sequence of
the gap sizes, since RuS2 has the largest band gap in the calculations. However, the band
gaps of FeS2, RuS2 and OsS2 from experiment are measured using optical experiments,
and, as already discussed for FeS2 pyrite in chapter 7, the optical band gap is difficult to
measure due to the low-intensity states from the S 3p band around Γ. Thus, the optically
measured band gap might be significantly larger than the “real” optical band gap, and
furthermore the fundamental band gap might be even smaller than the “real” optical band
gap. Therefore, the experiments might actually measure the energy gap between the d
states at the band edges instead. This might explain why the energy gaps between the
t2g valence states and eg conduction states, which increase in size from FeS2 with about
1.5 eV to RuS2 with 2.2 eV to OsS2 with 2.7 eV (see Fig. 10.1), are in better agreement
with the reported band gaps than the fundamental band gaps.

3Note, that the calculation of the dielectric constants has shown some minor numerical problems for
RuS2, OsS2, and ZnS2, and thus the values should be regarded with caution. The static dielectric
constant for ω = 0 could not be calculated for these systems, but only for a small finite ω = 0.2 eV.
However, the values of the dielectric constant for ω = 0.2 eV are quite close to the value of the static
dielectric constant in the case of the FeS2 and FeSe2 compound, and thus the ε for RuS2, OsS2, and
ZnS2 should be not too far off from the static value. Note, that the values for the static dielectric
constants comprise only of the electronic contributions.
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The fundamental band gaps of RuS2 and OsS2 are in reasonable agreement with the
results of Sun et al. [158], although the band gaps are smaller there. Most probably
the differences can be attributed to the structural relaxation leading to different Wyckoff
parameters compared to the structural parameters used in this thesis.

Finally, let me compare the results of FeS2, FeSe2 and FeTe2 marcasite. Since the orbital
character of the band edges defining the fundamental band gap is of Fe 3d character within
the GGA-PBE functional (see Fig. 10.3), the band gap opens for all three compounds
when applying GW . The calculated band gap sizes within GW are not far off from the
experimentally measured gaps for FeSe2 and FeTe2. For FeS2 marcasite the GGA-PBE
and GW band gap is much larger than the experimentally measured gap. In addition, the
calculated band gap sizes within GGA-PBE, HSE06 and GW decrease when going from
FeS2 to FeSe2 to FeTe2, whereas this is not the case in experiment due to the small band
gap of 0.34 eV reported for FeS2 marcasite. In a recent publication there are indications
that FeS2 marcasite has an at least as large band gap as iron pyrite [33], and thus a
thorough reexamination of the band gap in FeS2 marcasite would be desirable.

10.6. Conclusions

The electronic structure of the pyrite compounds FeS2, RuS2, OsS2, NiP2 and ZnS2,
and of the marcasite compounds FeS2, FeSe2 and FeTe2 has been investigated using the
GGA-PBE and HSE06 functional, and the G0W0@PBE approach. The results have been
compared to each other and a comparison between the calculated and experimentally
measured band gaps has been presented.

Overall, the investigated pyrite and marcasite compounds behave quite similar under the
application of GW , when focusing on the correction of states depending on the orbital
character. The energy gaps between states exhibiting either mainly d or p character on
both the valence band as well as conduction band edge are significantly increased, whereas
the energy gaps between states of different orbital character, i.e. p-d or d-p, experience
only a small change or even decrease around εF in the case of iron pyrite and iron marcasite
upon applying GW . The major difference between the GW results of the compounds
arises due to the different orbital character of the band edges and the states defining the
fundamental band gap. In the following a brief summary of the results for each of the
compounds is presented.
The band gap in FeS2, RuS2 and OsS2 is defined by localized d states at the valence

band edge and the S 3p conduction state around Γ, which position is quite sensitive
to the structural parameters. The localized d states give rise to a strong screening in
the materials, i.e. large static dielectric constants, which might explain the significantly
overestimated band gaps within the HSE06 functional. The unconventionally small GW
correction of the band gap in RuS2 and OsS2, or even the reduction of the band gap size in
FeS2 when applying GW might be also attributed to the screening. The calculated band
gaps within GGA-PBE, HSE06 and GW do not agree with the experimentally measured
ones. However, the experiments are based on optical measurements, and thus instead
of using the low-intensity d-p transitions (see chapter 7) for the determination of the
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optical band gap, the energy gap between the t2g and eg states of the band edges might
be measured instead. The calculated energy gaps between the t2g and eg states are in
more reasonable agreement with the experimentally determined band gaps.
The band edges of NiP2 and ZnS2 pyrite comprise of mainly P 3p and S 3p states,

respectively. Employing GW or HSE06 opens the band gap in both systems, and the
GW and HSE06 results agree quite well. The HSE06 functional seems to work for these
compounds, since the screening is not too large. For ZnS2 the band gap calculated within
GW and HSE06 is even in nice agreement with the estimated band gap from experiment.
For the marcasite compounds FeS2, FeSe2 and FeTe2 the fundamental band gap is

defined mainly between Fe 3d states within GGA-PBE, and thus it opens in for all three
systems when applying GW or HSE06. The HSE06 functional predicts again too large
band gaps, due to the large screening of the systems. The GW band gaps of FeSe2 and
FeTe2, however, agree well with the experimentally reported values. The FeS2 marcasite
band gap from experiment is much smaller than the calculated band gaps. However, in
the recent literature a band gap of iron marcasite, which is at least as large as in iron
pyrite, is reported [33]. Since most of the experimentally reported band gaps are only
estimated, new thoroughly conducted experiments for the pyrite and marcasite compounds
are desirable.
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11. Thermodynamics of Iron
Pyrite Films

11.1. Introduction

In the chapters 7 and 8 the electronic and optical properties of the iron pyrite bulk phase
have been discussed in detail. It has been pointed out that the size of the fundamental
band gap might be still not settled, and thus further thorough experimental and theoretical
investigations on that in the near future would be desirable. Nevertheless, starting from
this chapter, I would like to extend the investigation to iron pyrite films and surfaces, since
realistic solar cell devices possess interface regions, which might have a crucial influence
on the electronic structure and the photovoltaic performance. However, to model realistic
interfaces very large supercells are necessary, making the DFT calculations unfeasible.1

Therefore, the investigation is restricted to free standing iron pyrite films in this thesis,
which can be interpreted as a simple model for an interface in a device. The electronic
surface states of the pyrite films might lead to a reduction of the photovoltaic performance
by reducing the size of the band gap or acting as charge recombination centers when
located within the band gap. Thus, already a lot can be learned by studying the free
standing surfaces only.
In this chapter the thermodynamic stability of several iron pyrite films is examined.

Since the common facets of natural and synthetic FeS2 pyrite crystals are reported to
be along the (001), (111) and (210) direction [159], the discussion is restricted to the
in total 14 different iron pyrite films of different terminations and those crystallographic
orientations in the following. Rarely, the (110) facet is also observed in iron pyrite, and
there are indications that it has the highest energy of the low index surfaces in iron pyrite,
and thus it is not included in the study of this thesis. The influence of structural relaxation
and magnetism on the thermodynamic stability is also discussed.

11.2. Geometry of the Films

In the Fleur code [66] films need to be defined with a finite thickness, and thus they
have a surface on the top and on the bottom of the film. The thickness of a film needs
to be sufficiently large to prevent spurious interactions between the two surfaces (more

1Realistically speaking, the Fleur code [66] is currently capable to treat systems up to a few hundreds
of atoms within conventional “DFT” on state-of-the-art computers. For more sophisticated schemes
the number of atoms has to be much smaller.
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Figure 11.1.: The lattice planes of the crystallographic orientations (001), (111) and (210)
in the bulk unit cell of iron pyrite.

details are discussed in the next section). The iron pyrite films investigated in this thesis
have been chosen symmetric, otherwise, it is difficult to separate energetics and electronics
structure of the two different surfaces, and so the termination of the two surfaces is the
same.
All possible terminations of the films with crystallographic orientations along the (001),

(111) and (210) direction have been examined. In Fig. 11.1 the corresponding lattice
planes are depicted in the bulk unit cell of iron pyrite. For the (001) orientation there
are three different surface terminations denoted as (001)-S, (001)-2S and (001)-Fe (see
Fig. 11.2). For this orientation a S-Fe-S layer is repeated along the z direction in ABAB
stacking, where the layers A and B exhibit different positions for the S and Fe atoms, but
they are related via symmetry. Depending on whether the order of the top-most atomic
layers is S-Fe-S-... , S-S-Fe-... or Fe-S-S-... the film is S, 2S or Fe terminated, explaining
the notation.
For the (111) orientation there are five different terminations, namely (111)-Fe, (111)-S,

(111)-2S, (111)-3S and (111)-4S. In the case of the (210) orientation there exist even six
different terminations, (210)-Fe, (210)-S, 210-2S, (210)-Fe’, (210)-S’ and (210)-2S’. The
primed and unprimed notation distinguishes between terminations with the same order of
S and Fe atomic layers, but due to a different in-plane position of these atoms the primed
and unprimed termination are not equivalent. The notation corresponds to this used by
D. Alfonso [160], except that the primed and unprimed terminations of the (210) films are
exchanged.
In total these are 14 different iron pyrite films. For all films a side and top view of the

structure is presented in the appendix G. There it becomes also more clear why there are
five and six different terminations for the (111) and (210) orientation.
For the lattice parameter a and the Wyckoff parameter u the optimized structural

parameters of the iron pyrite bulk structure using GGA-PBE (a = 5.40 Å and u = 0.3826)
including or excluding further structural relaxations of the films have been exploited. More
details about the structural relaxation of the films will be discussed in the next section.
The two-dimensional in-plane unit cell is quadratic with the lattice constant a for the

(001) films, triangular for the (111) films with lattice constant
√
2a and rectangular with

the lattice constants
√
5a and a for the (210) films. The primitive lattice vectors of the
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Figure 11.2.: The top-most 6 atomic layers of a (001)-S iron pyrite film from side view.
The Fe atoms are indicated in red and the S atoms in yellow. The arrows
indicate the three possible terminations for the (001) iron pyrite films, e.g. the
(001)-Fe film has the Fe atomic layer as top-most layer and the (001)-2S
film exhibits the two atomic layers of S on top. There are only three different
terminations for the (001) orientation and not 6, because the S-Fe-S layers
A and B are equivalent via symmetry.

unit cell are depicted in the top views of appendix G.

11.3. Computational Details

The calculations have been conducted using the Fleur code. Since there is not yet a
consensus on which exchange-correlation functional or computational method predicts a
realistic band gap of iron pyrite bulk (cf. chapters 7 and 8), the GGA-PBE functional is
used for all the computations of the iron pyrite films. The GGA-PBE functional represents a
good compromise between being a fast computational method and predicting a reasonable
band gap size and optical absorption for iron pyrite when compared to experiment.
All the films have been structurally relaxed by using the optimized structural parameters

including the relaxed value for the Wyckoff parameter u from the bulk phase as starting
structure, and allowing relaxation only for the top-most 6 atomic layers on both surface
sides. The relaxed structure of the bulk phase is a good approximation for the bulk-
like middle of the film. The forces have been converged up to 10−4 Htr/a.u. and the
Broyden-Fletcher-Goldfarb-Shanno mixing has been exploited for structural optimization.
The computational parameters (cf. chapter 5) for the structural relaxation are all slightly

different for the different films. For instance, the plane-wave cutoff varies from 3.6 to
4.0 a.u.−1 depending on the structure and also the muffin tin radii vary due to a different
course of the structural relaxation. For each film the used computational parameters are
presented in a table in appendix G. No local orbitals have been included in the calculations.
For the calculation of the surface energies an approach as described in appendix C

has been used. To compare the total energies the computational parameters of the 14
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films (relaxed and unrelaxed), iron pyrite bulk, S8 bulk and bcc-Fe (magnetic) need to
be chosen as similar as possible. That is the reason why additionally to the discussed
numerical parameters of chapter 5, more numerical parameters are listed in the appendix G
like the difference in the vacuum constants D and D̃ (see Fig. 5.2), the number of radial
mesh points and the logarithmic increment for the description of the wave functions within
the muffin tins of the Fe and S atoms, and the two cutoff parameters Gmax.2 With the
following set of parameters the total energies have been calculated and the surface energies
are converged at least up to 1 meV/Å2: ∆vac = D̃ − D = 3.34 a.u., RFe

MT = 2.0 a.u.
using 705 grid points and a logarithmic increment of 0.016, RS

MT = 1.6 a.u. using 641
grid points and a logarithmic increment of 0.017, kmax = 4.0 a.u.−1, the density and
exchange-correlation potential cutoff Gmax values of 12.3 a.u.−1 and 10.3 a.u.−1, and a
k-mesh density of about 100 k-points in the full Brillouin zone of the square lattice of the
(001) surfaces.

For the investigation of the influence of magnetism on the surface energy, spin-polarized
DFT calculations with the Fleur code have been performed. All the numerical parameters
have been chosen as aforementioned, and thus it might be that the magnetic moments are
a bit underconverged, since depending on the system a lot of k-points might be needed
to carefully converge magnetic moments. The difference between the total energy of the
spin-polarized and non-magnetic DFT calculation has been determined to examine the
effect of magnetism on the surface energy.

Since the structure of films in the Fleur code exhibit a periodicity solely in the in-plane
directions, there is no need to converge the thickness of the vacuum to prevent a spurious
interaction between periodically repeated films along the z direction (cf. chapter 5).
However, the thickness of the films needs to be converged to prevent a spurious interaction
between the two surfaces located at the top and the bottom of the symmetric films. In
table 11.1 the surface energies of unrelaxed (001)-S films of different thicknesses are listed,
showing that the surface energy converges quite fast with the thickness. For all films
thicknesses about 2 nm (20 Å ) are chosen to be on the safe side, since the convergence
of the surface energy for the (111) and (210) films might be more problematic than that
for the (001) films. The exact values of the thicknesses are listed in the appendix G.

11.4. Surface Energies of the Films

In this section some general behavior of the structurally relaxed iron pyrite films are
discussed and compared to literature. Following the method described in appendix C the
surface energies of the films depending on the chemical potential of S are calculated and
the influence of structural relaxations and magnetism is investigated.

2These parameters are not explained in chapter 5, since they usually are not essential to obtain good
convergence. However, for comparing the surface energies, all possible parameters should be chosen
similar, if possible. For the interested reader I recommend to take a look to the reference [66] to find
more information on those parameters.
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d (Å ) 8.1 18.9 29.7 40.5 51.3
Nbulk 1.5 3.5 5.5 7.5 9.5
Natoms 18 42 66 90 114

Esur (meV/Å2) 73.18 72.92 73.02 73.10 73.11

Table 11.1.: The surface energy Esur of unrelaxed (001)-S films as function of the thickness
d of the films. Additionally, the number of atoms Natoms of the films and the
number of iron pyrite bulk unit cells Nbulk corresponding to the thickness is
listed.

δx δy δz
S1a, S1b ±0.04 -0.06 -0.01
Fe1a, Fe1b ±0.05 0.04 -0.08
S2a, S2b ±0.01 0.04 0.09
S3a, S3b ±0.01 0.00 0.02

Table 11.2.: The displacements (in Å) along x, y and z of the atoms of the first four
atomic layers in the (001)-S film within structural relaxation. The directions
of x, y and z are chosen as in Fig. 11.3 and as discussed in appendix G. The
atoms S1a and S1b are located in the top-most S layer, Fe1a and Fe1b are in
the top-most Fe layer and S2a, S2b and S3a, S3b are the atoms in the second
and third S layer, respectively. Due to symmetry the displacements along x
of the a and b atoms in the same atomic layer have the same value but a
different sign.

Structural Relaxation As expected the relaxations are largest for the atoms located
at or nearby the surfaces, whereas only minor displacements occur in the bulk-like middle
of the films. The Fe terminated films exhibit larger relaxations than the S terminated films
which, on the other hand, show smaller relaxations the more S atoms are located on the
surface.

A general feature in almost all films is the relaxation of the top-most Fe atoms towards
the bulk-like middle and at the same time the displacement of the below located S layer
towards this Fe atoms, leading to a significant decrease of the interlayer distance between
the top-most Fe and the S layer located below, in some cases up to 0.4 Å. It seems
this process is driven by electrostatics in order to screen the Fe atoms, which are “too”
unscreened when located at the unrelaxed surface. In table 11.2 the displacements in the
(001)-S film along the x, y and z direction are listed for the atoms of the first four atomic
layers. The significant reduction of the interlayer distance between the top-most Fe layer
and the S layer located below is clearly observable. The in-plane relaxations are also not
small for the first three atomic layers. The displacements are indicated in Fig. 11.3 to
illustrate the choice of unit cell and x, y and z direction for the values.
For specific details on the relaxation of each of the 14 films, I refer to the appendix G.

The (210)-Fe and (210)-2S’ film could not be structurally relaxed due to convergence
problems, indicating that those films exhibit some structural instabilities.
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Figure 11.3.: The displacements of the atoms in the first four atomic layers of (001)-S
within the structural relaxation are indicated in arrows using a side (left
panel) and top view (right panel) of the structure. The arrows are not true
to scale, but the relative size among them is approximately reproduced. The
displacements are color coded depending on the atoms: S1a and S1b (black),
Fe1a and Fe1b (green), S2a and S2b (orange) and S3a and S3b (blue). The
quadratic 2-dimensional unit cell of the (001) film is depicted as black frame
in the top view.

Comparing the results to those in literature reveals that the decrease of the interlayer
distance between the top-most Fe and subsurface S layer is pointed out in several other
references [160–162]. The in-plane relaxations of the top-most atoms in the (001)-S film
are also in reasonable agreement with [161, 162].3 The change in the interlayer distances
due to relaxation for the (111)-2S and (210)-S surface (not shown) is in reasonable
agreement with those of Hung et al. [163].

Thermodynamic Stability In Fig. 11.4 the surface energies calculated within the
approach discussed in appendix C are displayed depending on the chemical potential of
S. The chemical potential of S ranges between the two extreme cases of a S lean or S
rich condition, i.e. the experimental situation in which bcc-Fe or S8 is formed in the film
during synthesis.
The surface energy of the stoichiometric films4 (001)-S, (210)-S, (210)-S’ and (111)-2S

is independent of the chemical potential μS, whereas the surface energy of the S-poor
films (210)-Fe, (210)-Fe’, (111)-1S, (001)-Fe and (111)-Fe increases towards the S rich

3The signs of the displacements are not simple to compare, since it depends on the definition of the unit
cells and the choice of the representative atom in the atomic layer, which does not become always
clear in the references.

4If the number of atoms of the chemical constituents in the symmetric film equals the ratio of the bulk
phase, the film is called stoichiometric.
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limit. The surface energy of the S rich films (111)-3S, (210)-2S, (111)-4S, (001)-2S and
(210)-2S’ decreases with larger µS. The S poor films show higher surface energies ranging
from about 120 to 250 meV/Å2, whereas the S rich films exhibit significantly smaller
surface energies between 40 and 120 meV/Å2, except for (210)-2S’, which is located at
higher energies. However, the (210)-2S’ film could not be structurally relaxed due to
convergence problems, partially explaining the relatively large energy compared to the
other S rich films. Thus, the S poor films are less stable, which explains also the larger
structural relaxations as compared to the S rich films (cf. appendix G).
The most stable films are the (001)-S, (210)-2S and (111)-3S film. The (001)-S film

has a surface energy of 61 meV/Å2 and is clearly the most stable surface in the S lean
limit. The (111)-3S film has a surface energy between about 40-80 meV/Å2 depending on
µS and is the most stable surface in the S rich limit. The surface energy of the (210)-2S
film ranges from about 50-70 meV/Å2 and there is no region for µS, where it represents
the most stable surface. However, there is an interval of µS leading to almost the same
surface energies with about 60-62 meV/Å2 for these three films, and thus a coexistence
might be possible under these conditions. In addition, note that the numerical accuracy of
the results is limited to about 1 meV/Å2.
The literature reports the surface energy of the relaxed (001)-S surface to be about

1.06 J/m2 corresponding to about 66 meV/Å2 [161, 162], which is in nice agreement to
the result of 61 meV/Å2 reported in this thesis. Qiu et al. [164] report a larger surface
energy for the relaxed film of 1.23 J/m2 (77 meV/Å2), which corresponds to the value
reported by Alfonso [160]. The surface energies of the (111)-2S and (210)-S film are
reported to be about 87 and 94 meV/Å2, respectively [163], which fits to the results of 93
and 92 meV/Å2 in this thesis.
In [160] the surface energies of all the 14 films investigated in this thesis are also

presented depending on the chemical potential, showing an overall nice agreement. The
relative position of the surface energies to each other is quite similar in both cases, however,
there is a small interval of µS, where the (210)-2S film5 is most stable, leading to a smaller
interval with (001)-S as most stable film.

Influence of Relaxation and Magnetism It is enlightening to discuss the effect of
structural relaxation and magnetism on the surface energies of the iron pyrite films. In
Fig. 11.5 this effect is depicted by a histogram, which is adequate to evaluate the differences
between the surface energies when including structural relaxation or magnetism. The
surface energies have been evaluated at a chemical potential of S located exactly between
the two extreme cases of the S lean and S rich limit, and thus where the three most stable
surfaces (001)-S, (210)-2S and (111)-3S exhibit quite small differences in the surface
energies. Hence, the surface energies of the relaxed films correspond to those in Fig. 11.4
at the corresponding chemical potential.
The effect of structural relaxation can be discussed by comparing the surface energies

of the relaxed to the energy of the unrelaxed films, i.e. the films using the optimized bulk

5Please note that the unprimed (210) films are the primed and vice versa when comparing the results of
this thesis to the reference.
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Figure 11.4.: The surface energies of the 14 investigated iron pyrite films of different
terminations and orientations depending on the chemical potential of S,
denoted as µS. The color code is as follows: the Fe terminated films are red,
the single S terminated films are black and the multiple S terminated films
are blue. The surface energies of the films of (001) orientation are drawn in
solid lines, whereas the (111) films and primed (210) films are indicated as
dashed and the unprimed (210) films as dashed-dotted lines. The minimum
and maximum of µS, denoted as S lean and S rich limit, corresponds to the
experimental situation where the conditions cause a formation of bcc-Fe or
S8 on the surface in a synthesis. The difference between the S lean and S
rich limit is about 0.7 eV.
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structure parameters without a relaxation of the film structure. The structural relaxation
of the (210)-Fe and (210)-2S’ film did not converge, and thus no results could be displayed
for them. The structural relaxation leads to a significant decrease of the surface energies
of about 10-20%. The films with larger surface energies experience larger displacements
of the atoms at the surface leading to a larger difference between the surface energy of
the unrelaxed and relaxed film regarding the absolute values.
The effect of magnetism on the surface energies has been investigated by applying

spin-polarized DFT to the unrelaxed films. For that matter only collinear ferromagnetic
calculations have been carried out, and thus it might be that some of the films have
antiferromagnetic or non-collinear magnetic configurations even lowering the surface energy.
Again some results are missing, since for (001)-Fe, (210)-Fe, (210)-S, (210)-Fe’ and (210)-
2S’ the magnetic calculations did not converge. The surface energies are reduced by a few
percent due to the inclusion of magnetism, and thus they have less of an effect compared
to the structural relaxation. Note, that if we had carried out magnetic calculations for the
relaxed structures, an even lower reduction of the surface energies or a loss of magnetic
moments might occur.
Although the influence of magnetism on the surface energies is quite small, it might

have an effect on the stabilization of the most stable iron pyrite films (001)-S, (210)-2S
and (111)-3S in the region, where they exhibit almost the same surface energies. Since
the (001)-S film is non-magnetic, but the (210)-2S film and the (111)-3S film exhibit
magnetism, the stability region regarding µS might be expanded for (210)-2S and (111)-3S,
whereas the (001)-S becomes less stable. However, note that with a 5 and 4 meV/Å2

smaller surface energy of the (210)-2S and (111)-3S film due to magnetism, the surface
energies of these three films are still quite close to each other.
All investigated iron pyrite films, except the (001)-S film, show a stable magnetic

configuration. In the case of the (111) films, the magnetic moments of the top-most Fe
atoms and the neighboring S atoms becomes smaller, and thus also the difference in the
surface energy between magnetic and non-magnetic film becomes smaller, in the order
(111)-Fe, (111)-S, (111)-2S, (111)-3S and (111)-4S. That behavior is quite expected,
since bulk iron pyrite is non-magnetic and only the Fe atoms on the surfaces might tend to
become magnetic due to changes of the local atomic surrounding. The energy difference
between the spin-polarized film and the non-magnetic one as well as the magnetic moments
of the top-most atoms is listed in appendix G for all investigated films.

In the literature the (001)-S film is also reported to be non-magnetic [160, 162], however,
there is a report that the (001)-S film becomes magnetic within DFT+U [19]. Alfonso
shows that the (111)-3S film is magnetic with magnetic moments in reasonable agreement
to those listed in this thesis, but he finds that the (210)-2S film is non-magnetic in
contradiction to my results [160], which might be an effect of the structural relaxation.

11.5. Conclusions

The thermodynamic stability of 14 iron pyrite films of different terminations and orientations
has been investigated in this chapter. The influence of structural relaxation and magnetism
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/Å

)

(001) (111) (210)

relaxed
unrelaxed
magnetic, unrelaxed

Figure 11.5.: The influence of structural relaxation and magnetism on the surface energies
of the 14 iron pyrite films with (001), (111) and (210) orientation is depicted
in this histogram. A chemical potential which is exactly between the S lean
and S rich limit has been used for the evaluation. The surface energies
of the relaxed films are indicated as red bars and they correspond to the
values in Fig. 11.4 for corresponding µS. The yellow bars show the surface
energies of the unrelaxed films, i.e. the films within the optimized bulk lattice
parameters within GGA-PBE but without a relaxation of the film. The blue
bars depict the surface energies of the unrelaxed films including magnetism,
i.e. using a spin-polarized DFT calculation. For some films the structural
relaxation or the magnetic calculation did not converge leading to missing
bars. The dashed line indicates the surface energy of the most stable film
for this particular chemical potential µS, i.e. (111)-3S.
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has been also discussed.
The S rich films exhibit a smaller surface energy than the S poor films. The most stable

iron pyrite films are the (001)-S film in the S poor regime and the (111)-3S film in the S
rich limit. However, the (210)-2S film is quite close in energy, and thus there are chemical
conditions for S, in which all three surface configurations might coexist.
The effect of structural relaxation on the surface energies is quite large for the iron

pyrite films with a reduction of about 10-20%. On the other hand, magnetism has a
smaller influence on the surface energies, changing them only by a few percent. However,
since the (001)-S film is the only investigated iron pyrite film showing no magnetism, the
stability regime of the most stable films, namely (001)-S, (210)-2S and (111)-3S, might
shift slightly due to magnetism.
In the next chapter a detailed discussion about the electronic structure of these three

most stable films is presented.
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12. The Electronic Structure of
the most stable FeS2 (001),
(111) and (210) surfaces

12.1. Introduction

Interfaces and surfaces play an important role in photovoltaics, and thus the investigation
of iron pyrite should not be restricted to the bulk phase only. As stated earlier, the
free standing surface can be seen as a simple model of an interface in a device, and the
position of electronic surface states in the band structure might reveal bottlenecks for the
photovoltaic performance.
In the last chapter the thermodynamically most stable iron pyrite surfaces have been

determined to be (001)-S in the S poor limit, (111)-3S in the S rich limit and (210)-2S
exhibiting surface energies close-by. The electronic structure of these films will be discussed
in this chapter with the main focus lying on the (001)-S film, since it is the most simple
of them, whereas the (210)-2S film is only briefly discussed. Note, that the (210)-2S
film is also the least stable of these films corresponding to Fig. 11.4. The position of the
electronic surface states will be analyzed and, in the case of the (001)-S film, the optical
absorption and first attempts for passivation of these surface states using adatoms on top
of the surface are presented.

12.2. Computational Details

The electronic band structures have been calculated using DFT within the GGA-PBE
functional as implemented in the Fleur code [66]. The structurally relaxed films have
been used (see last chapter and appendix G for results) and no magnetism has been
considered.
The computational parameters for the Fleur code have been chosen as listed in

appendix G for the (001)-S, (111)-3S and (210)-2S film.
For the bulk-projected band structures the electronic band structure of iron pyrite bulk

has been calculated for the same high-symmetry k-path as for the band structure of
the film, except that a variable z component has been included, which goes from the
Brillouin zone center to the boundary. In the case of the (001)-S film the bulk-projected
band structure has been calculated for the iron pyrite bulk structure as shown in Fig. 7.1,
whereas for the (111)-3S film a hexagonal unit cell containing 36 atoms has been used,
i.e. the volume of the unit cell is 3-times as large the simple cubic one of Fig. 7.1. The
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12. The Electronic Structure of the most stable FeS2 (001), (111) and (210) surfaces

Figure 12.1.: The electronic band structure of the relaxed (001)-S iron pyrite film is
displayed once together with the bulk-projected band structure of iron pyrite
(left panel: film bands in orange and bulk-projected bands in black), and
then for a zoomed section of the energy range indicated by the arrows the
orbital-resolved band structure of the film (right panel: S 3p in black and Fe
3d in red) is shown.

choice of the hexagonal unit cell allows to compare the bulk-projected band structure
directly to the band structure of the film without dealing with band folding effects, since
the two-dimensional base area of the hexagonal unit cell corresponds to the unit cell of
the film.
For the optical absorption of the (001)-S film a k-mesh of 10×10×1 has been used.

More k-points made the calculations in Spex [69] computationally too demanding.

12.3. Electronic Structure of the (001)-S, (111)-3S
and (210)-2S Iron Pyrite Films

The electronic band structure of the (001)-S, (111)-3S and (210)-2S film are investigated
in this section. The position of the surface bands and the orbital character are discussed.
In the case of the (001)-S film additionally the optical absorption is presented.
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12.3. Electronic Structure of the (001)-S, (111)-3S and (210)-2S Iron Pyrite Films

(001)-S In Fig. 12.1 the electronic band structure of the (001)-S film is presented. In
the left panel the presentation together with the bulk-projected band structure allows to
locate the surface bands of the film. The bands of the film have been adjusted to the
bulk-projected bands such that some features like the local gaps in the band structure are
aligned, e.g. around M between −4 to −3.5 eV or from 2.5 to 3 eV.
Of particular interest are the surface bands close to or in the band gap region, since

they might have an influence on the photovoltaic performance by reducing the band gap
size or acting as charge recombination centers. There are surface bands at the bottom of
the conduction bands at around 0.7 eV and also at the top of the valence band defining
the valence band edge. A “plain” orbital-resolved density of states plot as it is done in [29]
is not accurate enough to find the surface states at the valence band edge, and thus
they report only of the surface states in the conduction band, which are in reasonable
agreement to the results in this thesis. Zhang et al. find two surface states in agreement
with my findings, although the surface state at the conduction band is located at higher
energies since they applied the DFT+U method [19]. The surface states at the top of the
valence bands have been also reported in [20].

The right panel in Fig. 12.1 displays the orbital-resolved band structure of the film,
revealing that both surface states are of strong Fe 3d character. Hence, the surface states
arise due to dangling bonds from the top-most Fe atoms, and thus an incorporation of
adatoms on top of the surface might bind to these dangling bonds leading to a passivation
of these surface states. In the next section I will discuss about the passivation of the
(001)-S surface states in detail.

The fundamental band gap of the (001)-S film is defined by the Fe 3d surface states at
the top of the valence bands and still (as in bulk) by the S 3p conduction band at Γ. The
band gap with 0.48 eV is larger than the fundamental band gap of the iron pyrite bulk
structure using the optimized structural parameters within GGA-PBE, which is 0.39 eV
(see chapter 7). Note that this is a numerical artifact, since an accurate determination
of the band edges of the electronic band structure needs also the k-path along Γ→ Z,
which is not possible for the film calculation with finite film thickness. Therefore, band
gaps defined by bands showing a large dispersion along Γ→ Z, for instance the S 3p band
in iron pyrite, might be too large.
Since the band gap of iron pyrite in the bulk phase exhibits a strong dependence on

the structural parameters (see chapter 7), it is interesting to investigate whether the
surface states are also sensitive to the structural parameters. For this in Fig. 12.2 the
orbital-resolved band structure of the (001)-S film is displayed for three different structural
setups. In the left panel and the central panel the optimized structural parameters a and
u within GGA-PBE have been used (a = 5.40 Å and u = 0.3826), where in the first case
the film has been additionally structurally relaxed and for the latter not. The right panel
shows the band structure using the structural parameters a and u taken from experiment,
i.e. a = 5.418 Å and u = 0.385, with no further structural relaxation of the film.
First of all a difference in the u parameter leads to a different position of the S 3p

band at Γ with respect to the Fe 3d states, as it has been already discussed for iron
pyrite bulk, which can be clearly seen by comparing the results for the (bulk-)optimized
structural parameters with those using the parameters from experiment, both without
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12. The Electronic Structure of the most stable FeS2 (001), (111) and (210) surfaces

Figure 12.2.: The orbital-resolved band structure of the (001)-S film using the fully relaxed
structure (left panel, denoted as “fully rel.”) as it is already presented in
Fig. 12.1, using the optimized structural parameters of iron pyrite bulk
(central panel, denoted as “bulk rel.”) and using the structural parameters of
iron pyrite bulk from experiment (right panel, denoted as “exp. para.”). In
the last two cases no further relaxation of the film has been carried out. The
S 3p character of the bands is indicated in black and the Fe 3d character in
red like in Fig. 12.1 (right panel). The larger the size of the points is, the
stronger is the corresponding orbital character.

further structural relaxation. The Fe 3d states in the electronic structure are only slightly
affected, including the position and the shape of the Fe 3d surface states, and thus the
structural parameters have a much smaller influence on the surface bands than on the
fundamental band gap.

On the other hand, the structural relaxation of the film significantly changes the
position of the surface states. The surface states at the bottom of the conduction band
appear slightly shifted upwards, whereas the surface states at the valence band edge are
considerably shifted into the bulk bands. The valence band edge is still defined by the Fe
3d surface states as it can bee seen in the bulk-projected band structure of Fig. 12.1, but
due to the considerable shift at the valence band edge the band gap opens from about
0.25 eV to 0.48 eV. In addition the shape of the top-most valence band is changed. The
VBM is located at X before relaxation, but after relaxation the energy of the top-most
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Figure 12.3.: The optical absorption of the relaxed iron pyrite (001)-S film is displayed as
red curve, and for comparison the optical absorption of iron pyrite bulk is
drawn in black. The first two major peaks of the absorption of the film are
denoted as A and B.

valence states at Γ and X are almost the same.
The optical transition elements of iron pyrite in bulk phase between the Fe 3d states

and the S 3p band at the band edges are strongly suppressed, leading to the low-intensity
tail in the optical absorption, whereas the transitions between the Fe 3d states dominate
the first major peak (see chapter 7). Therefore, a considerable influence on the optical
absorption from the surface states is expected. In Fig. 12.3 the optical absorption of the
(001)-S film is shown compared to the absorption curve of iron pyrite in the bulk phase.
The magnitude of the optical absorption is comparable to that of the bulk phase with
about 10-12 · 105cm−1. However, the Fe 3d surface states lead to considerable changes of
the peaks. The two major peaks at ω = 2 and 3.5 eV from the absorption of the bulk
phase overlap in the absorption of the film (denoted as peak B), since the first peak is
shifted to larger transition energies and becomes broader, whereas the second peak is
shifted to smaller energies instead. Most noticeable, there is an additional major peak
(denoted as A) at transition energies of about ω = 1 eV, which is caused by the Fe 3d
transitions between the surface states.
Since the bulk to surface ratio in experiments is much smaller than this in the calculation
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12. The Electronic Structure of the most stable FeS2 (001), (111) and (210) surfaces

Figure 12.4.: The electronic band structure of the relaxed (111)-3S film is displayed in the
left panel (orange curves) together with the bulk-projected band structure
(black curves) and in the right panel orbital-resolved into Fe 3d (red) and S
3p character (black) for a zoomed energy region around the Fermi energy.

of the 1.7 nm thick film, the peak A is expected to be less pronounced in experiments.1

However, it still might have an influence on the optical band gap size. In [26, 165] the
experimental data on the optical absorption of iron pyrite thin films is discussed, showing
that the thin films exhibit a smaller optical band gap, although a peak structure like peak
A in Fig. 12.3 is not visible.

(111)-3S In Fig. 12.4 the band structure of the relaxed (111)-3S film is presented,
aligned to the bulk-projected band structure in the left panel. There are surface bands
in the whole energy range of the former band gap region of iron pyrite bulk, making the
(111)-3S film metallic. The orbital-resolved band structure in the right panel shows that
the surface bands at the top of the former valence band consist mainly of Fe 3d character,
whereas the S 3p character of the surface bands increases when approaching the former
conduction band edge.

1At least this is expected for experiments measuring the optical transmission. For experiments using the
reflection instead, the bulk to surface ratio in the absorption spectrum depends on the penetration
depths of the incident light.
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12.4. Adatoms on top of the Iron Pyrite (001)-S Surface

Comparing the band structures of the (111)-Fe, (111)-S, (111)-2S, (111)-3S and (111)-
4S films in appendix G, reveals that the surface band character is more and more dominated
by S 3p. Since all of these films exhibit (almost) metallic behavior, the strategy to put
S in a (111)-like fashion on top of the surface seems not to be a successful strategy to
passivate surface states. All these surfaces, including the quite stable (111)-3S surface, are
fatal for the photovoltaic performance, and thus they should be avoided when synthesizing
iron pyrite. Using S poor conditions in the synthesis should favor the growth of the more
promising (001)-S surface.

(210)-2S and other iron pyrite films The electronic structure of the (210)-film will
be only briefly discussed, and I refer the reader to the appendix G for the orbital-resolved
electronic band structure of the film. There are surface states at the valence band edge
and at about 0.3 eV, which exhibit mainly Fe 3d character with a small admixture of S
3p. The latter surface bands are located in the former band gap region of iron pyrite bulk,
leading to a significantly reduced band gap of about 0.2 eV compared to the gap in the
bulk phase.

Except of the (001)-2S, (111)-3S and (111)-4S films all other films exhibit surface states
of Fe 3d character around the band edges, which arise due to dangling bonds from the
top-most Fe atoms. Thus, the passivation of the Fe 3d surface bands by finding suitable
adatoms to bind to the dangling bonds of Fe is most important to improve the photovoltaic
performance of the iron pyrite films. Without passivation most of the investigated iron
pyrite surfaces are metallic or exhibit a very small band gap. The (210)-S and (210)-S’
films have a band gap of about 0.5 eV, but are thermodynamically quite unstable. Most
promising seems to be the (001)-S film, which is the reason why the next section deals
with first attempts to passivate the surface states in this film.

Note that all the films (except the (001)-S film) exhibit a more stable magnetic
configuration, and thus the position of the surface bands in the electronic band structure
might change when accounting for magnetism in the DFT calculations, which has not
been done in this section. However, also note that the magnetic properties of the films
are expected to disappear with passivation of the surface states.

12.4. Adatoms on top of the Iron Pyrite (001)-S
Surface

Since there are Fe 3d surface bands in the (001)-S film, which are located in the former
band gap region of iron pyrite bulk, more precisely at the top of the valence bands, it is
necessary to find a suitable approach to shift these surface states out of the band gap.
The Fe 3d surface states arise due to dangling bonds from the top-most Fe atoms, and
thus one successful approach might be to bind suitable adatoms to the dangling bonds.
A first obvious choice is the deposition of S atoms on top of the surface. However,

putting S atoms in a (001)-like fashion with two S atoms per two-dimensional unit cell
on top of the surface, i.e. growing the (001)-2S surface, worsens the situation, since new
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Figure 12.5.: The orbital-resolved electronic band structures of the (001)-S film with S
(upper left), Se (lower left), Si (upper right) and Ge (lower right) adatoms
deposited on top of the surface. In red the Fe 3d character is depicted, and
the S 3p character and the p character of the adatom is drawn in black and
green, respectively. The size of the markers correlates to the contribution of
the corresponding orbitals.
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dangling bonds from the top-most S atoms appear (see appendix G). Then, surface states
of mainly S 3p character are located in the band gap region, which even lead to metallic
behavior. Hence, it seems there are too many S atoms on the surface in the (001)-2S
surface to successfully passivate the Fe 3d surface states, and thus a reasonable choice
might be to deposit only one S adatom per 2-dimensional unit cell on top of the surface.

To obtain a reasonable starting point for the structural relaxation, the S adatom is put
in the center of the connection line between the two positions, where the two top-most
S atoms are located in the (001)-2S film. Then, the distances between the adatom and
the two top-most Fe atoms are only slightly different with both about 3 Å.2 Not only
the electronic structure of the relaxed (001)-S film with a S adatom on top has been
calculated, but also isoelectronic Se has been used as adatom, and furthermore Si and Ge
have been used, which exhibit two less electrons per atom than S. I also tried to use O and
C as adatoms, but the structural relaxation did not converge for this very light atoms. The
orbital-resolved band structures for S, Se, Si and Ge as adatoms are presented in Fig. 12.5.

In all cases the situation has not improved compared to the “plain” (001)-S film. However,
interesting conclusions can be drawn by comparing the electronic structures. First of all,
except for Si, the surfaces with the adatoms have an improved band structure compared
to the (001)-2S film. In the case of Si adsorption the film becomes metallic due to Fe 3d
surface states. For the S adatom an Fe 3d surface band is split off from the bulk valence
bands significantly reducing the band gap size. The same happens for the Ge adatom,
except that the Fe 3d surface states split off from the bulk conduction bands, and pull
down the S 3p bulk band around Γ together. The best results can be obtained using Se
adatoms, which seems to be the only case, where the adatom binds to the dangling bonds
of the top-most Fe atoms, since the surface states exhibit considerable Se 4p character. In
addition, there is only one of the former two surface states left in the conduction band,
which can be seen as an improvement. Except of these two points, the electronic structure
of the Se-passivated (001)-S film looks quite similar to the “plain” (001)-S film with a
slightly smaller band gap size. Therefore, the usage of Se or other heavy adatoms seems
more promising than that of light adatoms regarding the passivation of the surface states
in the (001)-S film.

12.5. Conclusions

In this chapter the electronic structure of the most stable iron pyrite surfaces (001)-S,
(111)-3S and (210)-2S have been discussed.

The (001)-S film exhibits a band gap of 0.48 eV limited by Fe 3d surface states located
at the valence band edge. There are also Fe 3d surface states in the lower conduction
bands, but they have no influence on the band gap. The optical absorption is significantly
affected by those Fe 3d surface states, leading to a peak at smaller energies than the
major absorption features caused by transitions between bulk-like states. This peak might
appear much smaller in experiment, since the surface to bulk ratio is much smaller in

2Preferably, the distances between the S adatom and the two Fe atoms should be the same, but fulfilling
this condition leads to unphysically small distances between some other S atoms.
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experiment than in the calculations. First attempts to passivate the Fe 3d surface states
reveal that heavy elements like Se might be better suited to bind to the dangling bonds of
the top-most Fe atoms. The (001)-S surface is the most promising of all investigated iron
pyrite surfaces from photovoltaic perspective.

The (111)-3S film is metallic due to surface states with Fe 3d and S 3p character, where
the latter becomes dominant the closer the surface states are to the conduction band edge.
The metallicity is fatal for photovoltaic performance, which is why the (111)-3S surface
poses a problem without further post-treatment.

The (210)-2S films and all other observed iron pyrite films have either a too small band
gap, some of them are even metallic, or they are thermodynamically unstable.
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13. Conclusions

In this thesis first-principles calculations for pyrite and marcasite compounds have been
discussed. The focus has been on the analysis of their fundamental and optical band gap,
and their optical absorption, which are essential quantities for photovoltaic applications.
The calculations have been performed within density-functional theory (DFT) [39, 40]
using various exchange-correlation functionals like the local density approximation (LDA)
functional [41, 42], the generalized gradient approximation (GGA) proposed by Perdew,
Burke, and Ernzerhof (PBE) [43], as well as hybrid functionals with a focus on the
HSE06 functional [56, 57]. To obtain an improved description of electronic excitations
the GW approximation [54] has been considered as well. For the DFT calculations the
Fleur code [66] has been used, and the Spex code [69] has been employed for the GW
calculations.
The main part of the thesis is concerned with the electronic structure and the optical

properties of iron pyrite, which is reported to be a promising material for photovoltaic
applications due to its large optical absorption of 6× 105 cm−1, a band gap size of 0.95 eV
and a photocurrent of 40 mA/cm2 [13]. In addition, iron pyrite consists of abundant
materials, and thus might be suitable for large-scale and long-term applications. However,
a reported open-circuit voltage of merely 200 mV, leading to a conversion efficiency of
only 3% in iron pyrite solar cells [13], currently still disqualifies iron pyrite for photovoltaic
applications. In this thesis a possible cause for this low open-circuit voltage based on
the fundamental band gap of iron pyrite in the bulk phase has been presented, which is
fundamentally different compared to other explanations reported in literature, which are
based on defects, surfaces or precipitations. In addition, the thermodynamic stability and
electronic structure of iron pyrite surfaces have been investigated in this thesis, in order to
locate electronic surface states, which might act as charge recombination centers, and
thus limit the photovoltaic performance.

The analysis of the electronic structure and optical properties of FeS2 in the marcasite
phase has also covered a part of the thesis. The marcasite phase of FeS2 is reported to
coexist with iron pyrite, and a reported band gap size of 0.34 eV made it to an undesired
phase impurity [32]. However, the results in this thesis indicate that the FeS2 marcasite
phase might be better suited for photovoltaic applications than iron pyrite.
Since the first-principles results on iron pyrite and iron marcasite within the GW

approximation and the more sophisticated hybrid functionals are rather unconventional
in comparison to the usually studied main-group semiconductors, the investigation has
been extended to a couple of other pyrite and marcasite compounds, revealing that the
transitions between p and d states, as well as the large screening of the d states plays a
key role for these results.
After having presented a very short summary of the thesis, let me summarize and
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conclude this thesis in more detail. For this, the conclusions are partitioned into paragraphs
with a different focus.

Iron Pyrite The electronic structure of iron pyrite originates from a complex interplay
between the bonding and anti-bonding S 3p states of the covalent bond in the S dimers
on the one hand, and the crystal field splitting into Fe 3d t2g and eg states due to the
octahedral symmetry of the structure on the other hand. This interplay leads to a complex
hybridization between the Fe 3d and S 3p states around the Fermi energy, with quite
localized valence band states comprised of mainly Fe 3d with an admixture of S 3p
character, and a single S 3p rich band at Γ defining the conduction band minimum. Thus,
the fundamental band gap of iron pyrite is defined between an Fe 3d valence state and a
S 3p conduction state, which has an eminent impact on the sensitivity of the band gap
and the optical absorption of iron pyrite.
The Wyckoff parameter u has a considerable influence on the bond length of the S

atoms in the S dimers, and thus also on the position of the S 3p states with respect to the
Fe 3d states. Hence, a smaller Wyckoff parameter leads to a smaller fundamental band
gap in iron pyrite. For instance, the calculations within the GGA-PBE functional yield a
band gap of 0.62 eV using the structural parameters from experiment [51] (a = 5.42 Å,
u = 0.385), whereas the gap is significantly smaller with 0.39 eV using the optimized
structural parameters (a = 5.40 Å, u = 0.383), although the relative difference of the
Wyckoff parameters is less than 1%. The fundamental band gap is sensitive to the
computational methods like the choice of the exchange-correlation functional as well.
Within the hybrid functional HSE06 the band gap is largely overestimated with 2.24 eV,
whereas the single-shot GW approach based on PBE results yields an unconventional
reduction of the d-p splitting, resulting in a gap of 0.27 eV. In particular the convergence
of the GW results is far from trivial, since about 2000 electronic bands need to be
considered and the inclusion of local orbitals into the linear augmented plane-wave basis is
essential. The DFT+U model [166] using an effective Hubbard-U parameter of 2.4 eV
calculated within the constrained random-phase approximation [85] yields apparently the
best agreement with a band gap of 0.90 eV compared to the experimentally measured
0.95 eV.
However, one should be careful in only comparing the plain numbers of the band

gaps, since the calculated optical absorption within DFT+U is in worse agreement with
experiment [33, 34, 138, 139] than the “plain” GGA-PBE or GW result, and thus it is
questionable whether the DFT+U model is a suitable approach for iron pyrite. The first
major peak in the absorption spectrum comprises mainly of transitions between Fe 3d
states and it is located at about 2.0-2.2 eV in the experiments and calculations using
GGA-PBE and GW , whereas the peak is shifted by about 0.4 eV to larger energies within
DFT+U . For all the applied calculation methods in this thesis, the optical absorption
exhibits low-intensity contributions from Fe 3d to S 3p transitions for smaller transition
energies, which are situated in the tail of the optical absorption. They are small since on
the one hand the contribution of the S 3p states to the total density of states is small, and
on the other hand the matrix elements of the electric dipole operator are small due to the
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localization of the corresponding wave functions on different atoms. These low-intensity
contributions paired with the non-parabolic shape of the valence bands make it difficult
to use conventional methods to extract the optical band gap from the tail of the optical
absorption.
The sensitivity of the band gap and the unconventional optical absorption tail might

explain the wide spread of results for the band gap of iron pyrite in literature for both
computational results [29, 45–50] as well as experimental measurements [13, 33, 34,
138, 139]. Since the most accepted experimentally measured value for the band gap of
0.95 eV is based on optical absorption measurements, the experiments might not obtain
the limiting, fundamental band gap of iron pyrite. First, the fundamental band gap might
be smaller than the optical gap due to electric dipole transition elements between Fe 3d
and S 3p states along the high-symmetry k-path Γ→ X which are zero due to symmetry
and, second, the low-intensity tail of the optical absorption might be wrongly interpreted
to be caused by defects, and thus the measured optical band gap is actually too large.
The same arguments have been discussed in a quite recent reference for iron pyrite [26].

Assuming that iron pyrite exhibits a quite small fundamental band gap like the 0.3 eV
calculated within G0W0@PBE, there would be significant consequences for the photovoltaic
performance of iron pyrite solar cells. The reported small open-circuit voltage of 0.2 V
could be simply explained by a small fundamental band gap, as well as the large free
charge carrier densities of 1014-1018 cm−3 in undoped pyrite using electrical resistivity
measurements [14, 27], whereas pristine pyrite should exhibit free charge carrier densities
of about 1010 cm−3 at room temperature. An activation energy of 0.2 eV as measured in
temperature-dependent electrical resistivity experiments [37, 38] might be also explained
by a small fundamental band gap. A reduction of defects and precipitates to obtain as
clean as possible iron pyrite is not going to remedy the cause of the low performance,
if the fundamental band of the bulk phase of iron pyrite is already too small, since the
photovoltaic performance of the pristine bulk material is one of the most essential limits
of a solar cell device.
Although it seems tempting to make the pristine bulk phase of iron pyrite responsible

for the low performance, note that the experimental measurements are also quite sensitive
to defects or surface-related effects. In addition, it is still not quite clear, whether the
GW calculations for iron pyrite need to be performed selfconsistently. The quasiparticle
selfconsistent GW (QSGW ) [61] results of iron pyrite in this thesis exhibit a quite different
size of the band gap with about 0.8 eV compared to the 0.27 eV within single-shot GW .
However, note also that although the QSGW method does not suffer of a starting-point
dependence and it is a more sophisticated approach than single-shot GW , it tends to
overestimate band gaps, as demonstrated in appendix A of this thesis. Additionally, the
calculated transition energies within QSGW indicate that the optical absorption might
resemble the DFT+U result, and thus are in worse agreement with experiment than the
single-shot GW results. For a further analysis, new thoroughly conducted experiments are
desirable.

However, even if iron pyrite exhibits a smaller fundamental band gap than expected, it
is not automatically inappropriate for photovoltaic applications, since there are ways to
increase the band gap size. The application of stress might decrease the bond length of

145



13. Conclusions

the S dimers, and thus lead to a larger band gap.
Since interfaces and surfaces play an important role in realistic solar cells, free standing

iron pyrite surfaces have been used as a simplified and computationally feasible model of
those. The electronic structure of the stoichiometric and non-stoichiometric iron pyrite
films with (001), (111) and (210) orientation have been investigated using the GGA-PBE
functional. The S rich films are thermodynamically more stable than the S poor films.
The most stable films are the (001)-S film for S poor chemical conditions, whereas the
(111)-3S film becomes most stable for S rich conditions. The (210)-2S film is close in
energy, and there are chemical conditions for which all three surface configurations might
coexist.

The electronic structure reveals surface states for all three most stable iron pyrite films,
reducing the band gap compared to pristine iron pyrite, which even lead to a metallic
surface layer for the (111)-3S film. The surface states comprise mainly of Fe 3d character,
indicating that they are caused by Fe dangling bonds from the top-most Fe atoms. The
(001)-S film exhibits these surface states at the top of the valence band edge. There are
surface states at the conduction band too, which do not reduce the size of the fundamental
band gap, but they are responsible for a peak in the optical absorption, which is located
at lower transition energies than the major peak in the absorption of iron pyrite in the
bulk phase.
First attempts to passivate the Fe 3d surface states in the (001)-S film have been

carried out by placing adatoms on top of the surface, revealing that heavy elements like
Se or Ge might be better suited than lighter atoms like S or Si. The (001)-S iron pyrite
film is the most promising surface configuration for photovoltaic applications of all those
configurations which have been investigated.

Iron Marcasite and other Pyrite and Marcasite Compounds The unconventional
results for the band gap size of iron pyrite when applying the HSE06 functional or the
GW approximation are not an isolated case, but they occur in a couple of other pyrite
and marcasite compounds. The marcasite structure is structurally related to the pyrite
structure, also having as characteristics an octahedral coordination of the transition metal
atoms and covalent bonds in the dimers, and thus the electronic structure exhibits similar
key features to iron pyrite. The pyrite compounds FeS2, RuS2, OsS2, NiP2 and ZnS2, and
the marcasite compounds FeS2, FeSe2 and FeTe2 have been investigated and compared. It
is found for these compounds that the single-shot GW approach corrects the Kohn-Sham
energies of the DFT calculation differently depending on their orbital character, i.e. the
energy gaps between states of both either mostly d or p character are significantly increased,
whereas the energy gaps between a state of p and a state of d character are only slightly
increased or even decreased like in the case of iron pyrite and iron marcasite. A large
electronic screening caused by the d states seems to be responsible for the rather small
increase or even decrease of the p-d gap. In addition, a large screening might be also the
reason for the largely overestimated band gaps obtained within the HSE06 functional.

The application of GW and the HSE06 functional on the pyrite and marcasite compounds
exhibits this rather universal behavior, and the individual results for the fundamental band
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gap and other transition energies depend on their orbital character and the strength of the
screening of the corresponding compound. For instance the small screening and the mostly
uniform orbital character of the band edges in NiP2 and ZnS2 lead to a nice agreement
between the HSE06 and GW results, as well as to the experimentally reported band gap
for ZnS2, which is consistent with the conventional wisdom that the HSE06 functional
and the GW approach both improve the agreement to experiment compared to the “plain”
DFT results. On the other hand, an interesting interplay between a large screening and
the complex hybridization between the p and d states in all other investigated pyrite and
marcasite compounds is responsible for large deviations between the GGA-PBE, HSE06 and
GW results. Since most of the reported, experimentally measured band gaps in literature
for these compounds are only estimations (i.e. they might be affected by defects, surface
states, unusual band shapes and transition matrix elements), new thoroughly conducted
measurements are desirable to benchmark the GW and HSE06 results for this intriguing
compounds.
Regarding the size of the fundamental band gap calculated within G0W0@PBE, RuS2

pyrite with 0.77 eV, FeSe2 marcasite with 0.84 eV and FeS2 marcasite with 1.06 eV are
most interesting for photovoltaic applications. In particular the latter has been investigated
in detail in this thesis, since it consists of abundant elements and it has been reported
to coexist in iron pyrite crystals [32]. Iron marcasite has been tagged as undesired phase
impurity for a long time, since it is reported to have a rather small band gap of 0.34 eV [32],
however, the calculations in this thesis show not only a larger band gap in iron marcasite
than in iron pyrite, but the optical absorption is also significantly larger, which makes it
highly suitable for photovoltaic applications from the theoretical point of view. In difference
to iron pyrite there are no low-intensity transitions in the tail of the absorption and the
valence and conduction band edge are more parabolic, which allows to determine the
absorption edge, and thus the optical band gap, much more accurate compared to the
case in iron pyrite. Hence, iron marcasite deserves to be reinvestigated.
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A. Quasiparticle Selfconsistent GW
Results for Simple
Semiconductors and Insulators

Introduction The GW approximation has earned its merits in the prediction of band
gaps of semiconductors and insulators, and is (almost) a standard tool in the computation
of these systems nowadays. Mostly, single-shot GW approaches are still used due to
the computational demand of the GW calculations and the conceptional difficulties of
a selfconsistent GW implementation. However, single-shot GW approaches suffer of
a starting-point dependence, which also means that in cases where the starting point
is “pretty bad”, they might lead to wrong results. For instance, a system predicted to
be metallic within the GGA-PBE functional might remain metallic after applying GW ,
although the experiment clearly finds a semiconductor.
A remedy of the starting-point dependence are selfconsistent GW approaches. In this

thesis I employ the recently developed and already well-accepted quasiparticle selfconsistent
GW (QSGW ) method [61]. Some details about the theory are presented in chapter 4
and the references within.
To evaluate the performance of the QSGW method I have calculated the transition

energies of a couple of simple semiconductors and compared them to the single-shot
GW results and to calculations using the hybrid functional HSE06 (see chapter 3), both
well-accepted methods for calculating band gaps in these materials.

Computational Details For the DFT calculations within the GGA-PBE functional and
the HSE06 functional the Fleur code [66] has been employed.1 For the GW calculations
(single-shot and QSGW ) the Spex code [69] has been used.

The DFT and the GW results have been carefully converged with respect to the
plane-wave cutoff kmax, the number of k-points, the angular momentum cutoff lmax, and
the number of electronic bands Nbands. The inclusion of higher-energy local orbitals or
semicore states as local orbitals into the LAPW basis has been tested, too. A detailed
explanation of these computational parameters is presented in chapter 5.
In table A.1 the computational parameters for the GW calculations of the simple

semiconductors are listed, including the lattice parameter of the conventional cubic unit
cell.2 The investigated semiconductors and insulators are Si, C, Ar, MgO, NaCl and GaAs,

1The calculations within the HSE06 functional have been carried out by Dr. Martin Schlipf. A future
publication containing also these results is in preparation.

2The computational parameters of the DFT calculations are not listed in the table, since the focus of
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kmax lmax k-mesh Nband LOs a Ref.

Si 3.8 10 4×4×4 150 4s; 4p; 4d; 5f 5.431 [167]

C 4.9 8 4×4×4 150 3s; 3p; 4d; 5f 3.567 [168]

Ar 4.3 10 6×6×6 150 4,5s; 4,5p; 4,5d; 5,6f 5.311 [167]

MgO 5.0 10, 6 4×4×4 200 Mg: 4s; 4p; 4d; 5f ; 2p
O: 3,4s; 3,4p; 4,5d; 5,6f 4.212 [169]

NaCl 4.4 10, 8 4×4×4 250 Na: 4s; 4p; 4d; 5f ; 2p
Cl: 4s; 4p; 4d; 5f 5.620 [170]

GaAs 3.9 10, 10 4×4×4 300 Ga: 5s; 5p; 4d; 5f
As: 5s; 5p; 4d; 5f 5.653 [171]

Table A.1.: The computational parameters for the GW calculation of Si, C, Ar, MgO, NaCl
and GaAs. The plane-wave cutoff kmax (in a.u.−1), the angular momentum
cutoff lmax (for both atom types in MgO, NaCl and GaAs), the k-mesh,
the number of electronic bands Nband, and the considered local orbitals are
listed. In addition the lattice parameters a (in Å) from experiment with the
corresponding references are also given.

and thus a large range of fundamental band gap sizes is covered.
The GW results are sufficiently converged using a 4×4×4 k-mesh (except of Ar, where

a 6×6×6 k-mesh has been used), and about 150-300 electronic bands depending on the
compound have been used. In all cases at least one full set of s, p, d and f orbitals has
been included as higher-energy local orbitals. For the ionic compounds MgO and NaCl
the inclusion of the Mg 2p and Na 2p semicore state as local orbital into the LAPW basis
is important for convergence. Plane-wave cutoffs of about 3.8-5.0 a.u.−1 and angular
momentum cutoffs of about 8-10 are sufficient. The muffin tin radii are between 1.4 and
2.8 a.u. depending on the system (not listed in table A.1). They are chosen such that
they almost touch each other in the corresponding structure, and they approximately fulfill
the condition kmaxRMT = lmax.

Results In Fig. A.1 the transition energies of Si, C, Ar, MgO, NaCl and GaAs calculated
within the GGA-PBE and HSE06 functional, and G0W0@PBE and QSGW are displayed
and compared to the energy measured in the experiment. Therefore, the gray linear
curve indicates a perfect agreement between the calculated transition energies and the
experimentally measured ones (εexp

gap = εtheo
gap ). In the figure only those transition energies of

the investigated systems are drawn, for which an experimentally measured value is reported.
The Γ→ Γ transition for all the semiconductors and the Γ→ X and Γ→ L transition for
Si and GaAs are used. The calculated and, if available, experimentally measured transition
energies of Γ→ Γ, Γ→ X and Γ→ L for all the investigated semiconductors are listed

this chapter lies on the GW results.
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Figure A.1.: The transition energies of Γ → Γ (circles) for Si, C, Ar, MgO, NaCl and
GaAs, and additionally the transition energies of Γ → X (diamonds) and
Γ → L (triangles) for Si and GaAs are displayed. The transition energies are
calculated within GGA-PBE (black), HSE06 (blue), G0W0@PBE (green) and
QSGW (red), and they are plotted against the values measured in experiment.
Hence, a value on the gray dashed linear curve means a perfect agreement
between theory and experiment. Since the results within the energy scale
between 0 and 4 eV are difficult to display in the left panel, a zoom into
the corresponding energy range is shown in the right panel. The transition
energies are also listed in table A.2.
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in table A.2.
The investigated semiconductors and insulators cover a wide range of energy gaps with

Si and GaAs exhibiting small to moderate energy gaps from about 1 to 4 eV, then diamond
and the ionic compounds MgO and NaCl with energy gaps between 6 to 10 eV and finally
a very large band gap insulator with Ar with up to 14 eV transition energies. Since the
transition energies between 0 and 4 eV are hard to analyze on the energy scale of the left
panel of Fig. A.1, a zoom into this energy range is presented in the right panel of the
figure.

The calculated energy gaps within the GGA-PBE functional are in all cases smaller than
the gaps measured in experiment, which is consistent with the conventional wisdom that
the energy gaps within (semi-)local exchange-correlation functionals like the LDA or the
GGA functionals are underestimated.3 In some cases like MgO or Ar the underestimation
is quite strong, exhibiting an almost 50% smaller energy gap.

The hybrid functional HSE06 yields a nice agreement of the energy gaps with experiment
for the small to moderate band gap semiconductors Si and GaAs. However, the energy
gaps in the large band gap systems seem to be systematically underestimated by HSE06.
The calculated transition energies of the simple semiconductors within the GGA-PBE and
HSE06 functional in this thesis are in excellent agreement with those of reference [93].
The G0W0@PBE calculations yield overall the best agreement with experiment. The

maximal relative differences between the experimentally measured and calculated transition
energies are about 10% in the Γ→ Γ transition of GaAs, but the average relative difference
is only about 5-6%. There is no clear under- or overestimation of the results compared
to experiment. The HSE06 and G0W0@PBE results for Si and GaAs are in a quite nice
agreement.

The energy gaps within QSGW exhibit in all cases a slight to moderate overestimation
compared to experiment, e.g. in the case of MgO the energy gap is about 30% larger.
The average overestimation is about 20%.

At first sight it is quite surprising, that G0W0@PBE performs better for the simple
semiconductors than QSGW , since the QSGW method is more sophisticated and does
not suffer of a starting-point dependence. However, a possible explanation might be that
in both methods no excitonic and thermal effects are included, which both would reduce
the size of the energy gaps. Accounting for these effects might significantly improve
the QSGW results, as it is reported in [61]. On the other hand, the screening in the
single-shot GW approach might be overestimated, leading to energy gaps, which would be
systematically too small if thermal and excitonic effects were considered. Thus, single-shot
GW might profit from a fortuitous error cancellation.

3At least this is the case for most simple semiconductors and insulators. As I discuss in this thesis, there
are compounds like the pyrites and marcasites, which might not follow this rule-of-thumb.
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GGA-PBE HSE06 G0W0 QSGW exp. Ref.

Si
Γ→ Γ 2.56 3.32 3.26 3.60 3.05 [172]
Γ→ X 0.71 1.28 1.27 1.49 1.25 [172]
Γ→ L 1.54 2.23 2.22 2.52 2.06 [173]

C
Γ→ Γ 5.60 6.99 7.55 8.48 7.3 [174]
Γ→ X 4.77 5.92 6.26 7.09 - -
Γ→ L 8.48 10.03 10.49 11.57 - -

Ar
Γ→ Γ 8.67 10.34 13.19 15.00 14.2 [175]
Γ→ X 11.33 13.02 16.10 17.79 - -
Γ→ L 11.50 13.24 16.39 18.16 - -

MgO
Γ→ Γ 4.74 6.46 7.49 9.72 7.7 [176]
Γ→ X 9.14 10.84 11.70 13.95 - -
Γ→ L 7.91 9.67 10.69 12.95 - -

NaCl
Γ→ Γ 5.15 6.53 7.99 9.97 8.5 [177]
Γ→ X 7.55 9.03 10.73 12.73 - -
Γ→ L 7.28 8.64 10.22 12.17 - -

GaAs
Γ→ Γ 0.52 1.42 1.36 1.94 1.52 [174]
Γ→ X 1.47 2.07 2.01 2.29 1.90 [174]
Γ→ L 1.01 1.77 1.72 2.17 1.74 [174]

Table A.2.: The transition energies of Γ → Γ, Γ → X and Γ → L for Si, C, Ar,
MgO, NaCl and GaAs within the GGA-PBE and HSE06 functional, and the
G0W0@PBE and QSGW approach. The experimental values (if available)
with the corresponding references are listed in the last two columns.
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B. Calculating the Optical
Absorption

Introduction The optical absorption of a material is an important quantity for photo-
voltaic applications. A large optical absorption within a wide range of the (visible) light
spectrum is desirable, since then already thin absorption layers can absorb most of the
light, and thus the amount of material for the solar cell can be significantly reduced.
For an exact calculation of the optical absorption, a two-particle Green’s function is

necessary, since an optical excitation does not change the number of particles, as it is
the case for photoemission (cf. chapter 4), but a coupled electron-hole pair is created.
Therefore, an accurate description of excitonic effects might be important for the optical
absorption. The simplest methods capable of calculating excitonic effects are time-
dependent density-functional theory methods with specific kernels or the Bethe-Salpeter
equations [105]. Both methods are computationally quite demanding, and thus limited
to smaller systems. However, for many systems the specific excitonic effects are rather
small, and thus the optical absorption calculated from “conventional” DFT can be seen
as a good approximation. In this appendix I will discuss the approach how the optical
absorption is calculated in this thesis and the numerical difficulties. In this appendix the
SI unit system is used instead of atomic units.

The Total Transition Rate The electrons couple to the light via the vector potential

A(r, t) = A0êei(qr−ωt), (B.1)

where ê is a unit vector pointing along the direction of A and A0 is the amplitude of the
vector potential. The frequency is related to the wave vector via

ω = cq/n, (B.2)

where n is the refraction index of the medium in which the light wave travels. Then,
the linear momentum of an electron is transformed to a “generalized” linear momentum
p− eA, and thus the kinetic energy term transforms to

T̂gen =
(p− eA)2

2me

= T̂ + Ĥe−l +O(A2), (B.3)

with

T̂ =
p2

2me

(B.4)

Ĥe−l = − e

me

Ap. (B.5)
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The former expression is the kinetic energy of an electron, whereas the latter term is the
linear coupling between an electron and the light. The term proportional to pA is chosen
to zero using the Coulomb gauge. In the following non-linear terms in the vector potential
A are neglected, since they are small for not too large light intensities.

Defining Ĥe−l as the perturbation acting on an electron in a solid and exploiting Fermi’s
Golden Rule we obtain

Wi→f =
2π

~
|〈f |Ĥe−l|i〉|2δ(~ω − εf + εi), (B.6)

where i and f are the initial and final state of the electron with the corresponding band
energies εf and εi, respectively, δ is the Kronecker-delta function andWi→f is the transition
rate for the transition between the states i and f . The delta function in the energies
represents the energy conservation of the process, since the energy of the absorbed photon
has to correspond to the energy of the transition εf − εi.
For slowly varying light waves in space, the electric dipole approximation is quite

reasonable, i.e. eikr ≈ 1. Then, the matrix elements of the perturbation become

〈f |Ĥe−l|i〉 = −eA0

me

〈f |êp|i〉. (B.7)

The connection to the electric dipole operator d̂ = −er̂ can be seen by considering the
Heisenberg equation of motion for the spatial operator r̂:

〈f |p̂|i〉 = i
me

~
〈f |[Ĥ, r̂]|i〉 = i

me

~
(εf − εi)〈f |r̂|i〉

= iωme〈f |r̂|i〉. (B.8)

For the matrix elements 〈f |êp|i〉 the selection rules of the electric dipole apply,
i.e. ∆l = ±1 and ∆m = 0,±1 for transitions exhibiting no spin-flip (∆s = 0).
To obtain the total transition rate of all possible transitions per unit volume from

eq. (B.6), we have to sum over all k-points and all initial and final states and divide by the
volume of the unit cell V .1 Additionally, usually the spherical average over all directions ê
is taken, indicated by êp, which leads to an additional factor 1/3. This can be seen by
taking the integral of the vector product of the unit vectors with an angular-independent
matrix M over the complete sphere, which is of similar form to |〈f |êp|i〉|2:

1

4π

∫
dΩ
∑
i,j

êTi (Ω)Mijêj(Ω) =
1

4π

4π

3
êTMê. (B.9)

Note that the terms with i 6= j vanish for angular-independent M, and the factor 1/3
enters due to the three diagonal terms.
With this the total transition rate looks as follows:

W (ω) =
2π

3V ~

(
eA0

me

)2∑
k,i,f

|〈f |êp|i〉|2δ(~ω − εf + εi). (B.10)

1The sum over the k-points needs to be normalized by dividing by the number of k-points, which is not
explicitly shown in the following equations.

156



α(ω) ∼ W (ω)I0 I(x)

x

Figure B.1.: The intensity of an incident light wave I0 decreases in the material due to
optical absorption to a value I(x) after the light traveled a distance x. That
is the so-called Beer-Lambert law. The material-dependent optical absorption
coefficient α(ω) describes this process and is related to the total transition
rate W (ω) of the system as explained in the text.

The Connection to the Optical Absorption To connect the total transition rate
to the optical absorption α(ω), let me first define the optical absorption. The optical
absorption coefficient of a material is the exponent describing the exponential decrease of
the intensity of a traveling light wave in this material. This exponential decrease is also
known as Beer-Lambert law. In Fig. B.1 the process of absorption is depicted.
The exponential decay of the intensity

I(x) = I0e−αx (B.11)

follows from the attenuation for small x:

I(x)− I0 = ∆I = −αI0x. (B.12)

Due to energy conservation the change in the intensity, which is the transferred energy per
unit area and time, has to correspond to the energy transitions in the material, and thus

αI0x = ~ωW (ω)x, (B.13)

and thus
α = ~ω

W (ω)

I0

. (B.14)

Now, we need the connection between the intensity I0 and the vector potential amplitude
A0 to find a suitable expression for α. The energy flow per area and per time in the light
wave can be calculated via the Poynting vector

S = E ×H , (B.15)

where E is the electric field and H the magnetic field of the light wave. Since it holds2

E = −∂Re(A)

∂t
(B.16)

H =
1

µ0

rot (Re(A)) , (B.17)

2We have introduced a complex vector potential to simplify calculations, but the electric field and the
magnetic field as well as the Poynting vector needs to be a real quantity, and thus a cosine vector
potential is used here via the real part.

157



B. Calculating the Optical Absorption

with µ0 the vacuum permeability, the Poynting vector can be expressed as

S =
ω

µ0

|A0|2sin2(qr − ωt)q. (B.18)

The magnitude of the time-averaged Poynting vector is the intensity of the light wave and
thus

I0 =
ω2n

2µ0c
A2

0 =
1

2
ω2ncε0A

2
0, (B.19)

where we have used k = ωn
c

with n the refraction index of the material and ε0 = 1
µ0c2

.
With all that solving eq. (B.13) for α holds:

α(ω) =
4πe2

3V m2
eε0cn

1

ω

∑
k,i,f

|〈f |êp|i〉|2δ(~ω − εf + εi) (B.20)

=
4π

3V ε0cn
ω
∑
k,i,f

|〈f |êd|i〉|2δ(~ω − εf + εi). (B.21)

The first expression uses the matrix elements of the linear momentum operator, whereas
in the second expression the matrix elements of the electric dipole operator enter. The
Spex code [69] allows to calculate the matrix elements of the dipole operator. In this
thesis broadened Lorentzian functions have been used for the delta-functions.

For more details on the theory behind the optical absorption, I recommend to read the
following references [178, 179], which I have also used as a guideline for this appendix.

Orbital-resolved Transition Rates From the total optical absorption and the total
transition rates no information about the contributing orbitals can be drawn. For that an
orbital-resolved analysis is necessary, which is done in the following way:

Wµ→ν(ω) =
2π

3V ~

(
eA0

me

)2∑
k,i,f

|〈f |êp|i〉|2DiµDfνδ(~ω − εf + εi), (B.22)

where Diµ and Dfν are the k-resolved and into the orbitals µ and ν resolved orbital
contributions of the initial and final state i and f . That definition of the orbital resolved
transition rate is in the spirit of a joint density of states. However, with this definition we
encounter the problem that the sum over all orbital contributions µ and ν do not add up
to the total transition rate.
In this work I have avoided this problem in the following way. First I analyzed the

most important orbital contributions to the optical transitions within the observed energy
range for the system. Then the appropriate multiplication factors for the corresponding
transition rates Wµ→ν(ω) are calculated such that their sum yields approximately the total
transition rate in the observed energy range. The multiplication factors are calculated from
a system of linear equations, which I get by equalizing a certain number of characteristic
values of the total transition rate to the sum of the orbital-resolved transition rates. The
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Figure B.2.: The total transition rate W of iron pyrite is presented as a black solid
curve. The orbital-resolved transition rates Wμ→ν do not add up to the
total transition rate, and thus a system of linear equations is solved to find
factors such that the multiplied transition rates W̃μ→ν approximately sum up
to the total transition rate. The most important orbital-resolved transition
rates are those of the Fe 3d-Fe 3d (red dashed curve), the Fe 3d-S 3p (blue
dashed-dotted curve), the S 3p-Fe 3d (green dashed-dotted curve) and the
S 3p-S 3p transitions (yellow dashed curve) within the energy range of 6 eV.
The sum of these four transition rates is indicated as black dashed curve. The
four large black markers show the chosen values for the total transition used
in the system of linear equations to obtain reasonable multiplication factors
for the orbital-resolved transition rates.

characteristic values in the total transition rate have been peak positions or dips in the
most cases.

As an example let me demonstrate this procedure for the case of the total transition
rate of FeS2 pyrite, which is displayed in Fig. B.2. The large black filled circles in the
figure indicate the chosen characteristic values of the total transition rate used for the
system of linear equations. The main peak at 2 eV, the dip at about 3 eV, the second main
peak at about 3.6 eV and a value in the tail of the transition rate at 5.5 eV have been
selected. Within the energy range of 6 eV, the main contributions to the total transition
rate are from the Fe 3d-Fe 3d (red dashed curve), the Fe 3d-S 3p (blue dashed-dotted
curve), the S 3p-Fe 3d (green dashed-dotted curve) and the S 3p-S 3p transitions (yellow
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B. Calculating the Optical Absorption

dashed curve).3 The multiplication factors have been determined to 22, 57, 74 and 150,
respectively. The sum of those four orbital-resolved transition rates, each multiplied with
the corresponding multiplication factor, yields approximately the total transition rate in
the observed energy range. For larger energies (not shown in the figure) the deviations are
considerably larger, since other orbital-contributions become eminent.

3The term Fe 3d-Fe 3d or S 3p-S 3p transitions with respect to optical transitions might be confusing.
The dipole selection rule forbids ∆l = 0, and thus with this term I mean a transition from Fe 3d
rich bands to Fe 3d rich bands, in which a hybridization with other orbital character is essential to
obtain non-vanishing dipole matrix elements for these transitions. Formally, it corresponds to equation
(B.22).
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C. Thermodynamics of Surfaces

Introduction In order to determine the most stable surface configurations of FeS2 pyrite
surfaces, the surface energies have to be compared. The different surface configurations
comprise different crystallographic orientations and different surface terminations. Since
I consider also non-stoichiometric, symmetric films,1 the total energies of the density-
functional theory calculation can not be compared directly. The number of Fe and S atoms
are different for different surface configurations, which has to be accounted for when
comparing the energies. Additionally, the non-stoichiometric surfaces exhibit a dependence
on the chemical potential of the S and Fe atoms. Thus, the quantity to compare here is
the free energy F . I followed the approach of the references [180, 181] to calculate the
free energy of the surface systems, which is presented in the next paragraph.

Calculating Surface Energies Let us consider an iron pyrite film consisting of NFe

Fe atoms and NS S atoms with the corresponding chemical potentials µFe and µS. The
following equations can be also used for every other film of a binary compound, when
replacing Fe with atom type A and S with atom type B. For the free energy of the iron
pyrite film the following equation holds:

Ffilm = Efilm −NFeµFe −NSµS, (C.1)

where Efilm is the total energy of the film system obtained in the DFT calculation. This
equation depends on two chemical potentials making it quite difficult to analyze, and thus
let us try to eliminate one chemical potential from the equation. For this we can exploit
that

µFe + 2µS = µbulk
FeS2

(C.2)

has to be fulfilled in thermodynamic equilibrium. Here, we have defined an effective
chemical potential µbulk

FeS2
for iron pyrite bulk. Solving this equation for µFe and inserting it

into eq. (C.1) leads to

Ffilm =
(
Efilm −NFeµ

bulk
FeS2

)
− (NS − 2NFe)µS. (C.3)

For stoichiometric surfaces it holds NS = 2NFe, and thus the free energy is independent
of the chemical potential of the S atoms. The chemical potential of S can be limited to
a certain range, for instance representing the experimental conditions during the growth
of the surfaces. For µS ≥ µbulk

S bulk-phases of S will be formed in the film during the

1If the number of atoms of the chemical constituents in the symmetric film does not yield the ratio of
the bulk phase, the film is called non-stoichiometric.
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C. Thermodynamics of Surfaces

synthesis. In the other limit for too small µS, Fe bulk will be created, and thus we can
limit the chemical potential of S to

1

2
(µbulk

FeS2
− µbulk

Fe ) ≤ µS ≤ µbulk
S , (C.4)

where µbulk
S is the effective chemical potential of the most stable S bulk structure, i.e. S8,

and µbulk
Fe is the effective chemical potential of the magnetic bcc Fe bulk phase. All these

effective chemical potentials are not directly accessible, and thus they are approximated by
the total energies of the corresponding bulk phases per formula unit (see [180, 181]).
It is almost unavoidable to have slight inconsistencies between the computational

parameters of the film calculations and the bulk calculation of iron pyrite and between
the films of different crystallographic orientation due to different two-dimensional unit
cells. In the worst case this can falsify the comparison between the surface energies.
Therefore, instead of calculating the total energy of iron pyrite bulk from the setup of the
bulk structure it is more consistent to calculate it directly from the film calculations. For
this the total energies of films with different thicknesses need to be calculated and the
following expression yields the total energy of iron pyrite bulk:

Ebulk
FeS2

=
EN ′

film − EN
film

N ′ −N , (C.5)

where N and N ′ indicate the thickness of the film structures in iron pyrite bulk unit cells
and EN ′

film and EN
film are the corresponding total energies of those films. In this thesis I

have calculated the total energy of iron pyrite bulk in this vein for each crystallographic
orientation (001), (111) and (210).
Finally, one could ask why can we interpret the free energy of the films as surface

energies? - The different surface configurations only differ in a few layers at the top
and the bottom of the film, whereas the bulk-like middle is almost the same. Hence,
the differences in the free energy of different surface configurations has to be caused by
the different surfaces. It is quite common to divide the energy Ffilm by the area of the
two-dimensional unit cell to obtain the surface energy in units of J/m2 or meV/Å2. Since
the films in this thesis exhibit two surfaces, the free energy is furthermore divided by 2. In
this thesis I call the free energy of the film also surface energy occasionally.
Important for the comparison of the different surface energies is the (best-possible)

consistency of the computational parameters, i.e. kmax, RMT, lmax, the density of the
k-mesh etc. should be equal. That has been done in this work and the specific parameter
setup is discussed in the main text of chapter 11. Before the surface energies are compared,
the films have been relaxed, and there the parameters can hardly be chosen equal for
all systems. The results for the relaxations and the used computation parameters are
displayed in the appendix G.
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D. Numerical Parameters for the
DFT Calculations of Iron Pyrite

The convergence of the total energy and the fundamental band gap of iron pyrite for the
numerical parameters of the FLAPW code Fleur [66] (see chapter 5) are discussed in
this appendix.
In Fig. D.1 the dependence of the total energy and the band gap at Γ for iron pyrite

on the plane-wave cutoff kmax is displayed. Note, that the differences between the total
energies calculated with different plane-wave cutoffs is much larger than the energy
differences for the band gap. The convergence behavior looks quite similar for the total
energy and the band gap. Comparing the values for kmax = 4.0 a.u.−1 with those for
kmax = 4.6 a.u.−1, we see that the total energy changes less than 0.2 eV and the size of
the band gap changes less than 10 meV. Since a plane wave cutoff of kmax = 4.6 a.u.−1

can be regarded as extraordinary large for “conventional” DFT calculations, the choice of
kmax = 4.0 a.u.−1 yields sufficiently accurate results. With kmax = 4.0 a.u.−1 the LAPW
basis contains already about 100 basis functions per atom for iron pyrite, whereas more
than 140 basis functions per atom are used for kmax = 4.6 a.u.−1. For much larger plane
wave cutoffs (kmax > 7.0 a.u.−1) the total energy follows the trend of convergence first,
but then the total energy starts to strongly decrease (not shown in figure). This numerical
artifact is caused by linear dependencies in the LAPW basis.
With the sufficiently high plane wave cutoff kmax = 4.0 a.u.−1 I have calculated the

band gap depending on the angular momentum cutoff lmax, which is presented in the table
on the right side of Fig. D.1. By varying lmax from 6 to 12 the band gap changes about
2 meV, which means the “standard” value of lmax = 8 is good enough for our purposes.
The same is true for a k-mesh of 10×10×10 k-points. The band gap at Γ varies in the
region of µeV for the different k-meshs (the accuracy in the table beside Fig. D.1 only
covers meV), and thus iron pyrite is accurately described already with a much less dense
k-mesh like 4×4×4. However, since we are not only interested in the band gap, but also
orbital contributions and in the case of the surfaces also magnetic properties, it is safer
to use a dense k-mesh from the beginning, in particular since these k-mesh sizes present
not the bottleneck for “conventional” DFT calculations. Due to the 24 symmetries of
the iron pyrite system the 6×6×6 k-mesh contains 11 irreducible k-points, whereas the
10×10×10 k-mesh has 45 irreducible points.

Since the FLAPW calculations do almost not depend on the radii of the muffin tins,1

1This is the case as long as the muffin tin radii are not chosen too small, since then core states and
valence states can not be separated any more. In addition, note that as a rule-of-thumb the relation
RMTkmax ≈ lmax should be fulfilled.
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D.NumericalParametersfortheDFTCalculationsofIronPyrite

lmax 6 8 10 12
εgap 0.622 0.621 0.620 0.620

nk 6 8 10 12
εgap 0.621 0.621 0.621 0.621

FigureD.1.:Theconvergenceofthetotalenergy(leftaxis)andthebandgapatΓ(right
axis)ofironpyritewithrespecttotheplane-wavecutoffkmax isdisplayed
fora“conventional”DFTcalculationusingtheGGA-PBEfunctional.For
boththetotalenergyandthebandgapthevalueatkmax=4.6hasbeen
subtracted.Forthesecalculationsanangularmomentumcutofflmax =8
and10×10×10k-pointshavebeenused.Thetwotablesbesidethefigure
displaytheconvergenceofthebandgap(ineV)ofironpyritewithrespectto
lmax andthek-mesh,whichhasbeenchosentonk×nk×nk.Therethe
convergedvalueofkmax=4.0hasbeenused.

theyarenoconvergenceparameters.Themuffintinradiifortheironpyritestructure
withalatticeparametersofa=5.418Åanda Wyckoffparameterofu=0.385are
chosentoRFeMT =2.23a.u.andR

S
MT =1.98a.u.,andthustheyalmosttoucheachother.

However,theironpyritestructureisaquiteopenstructure,i.e.theinterstitialregion
coversarelativelylargepartofthespace.
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E. Charge Density Slices of Iron
Pyrite

In the following figures the projected charge density of FeS2 pyrite onto the plane spanned
by the directions (111) and (11̄0) is presented for different energy regions (see also Fig. 7.4).
The band structure can be divided into distinct regions of quite different orbital character,
which is explained in detail in the chapter 7 and Fig. 7.2. Each charge density plot has
been plotted on a logarithmic scale with a RGB (Red-Green-Blue) color code (i.e. red/blue
minimal/maximal charge density contribution). The black box indicates the two S atoms
forming the S dimer orientated along the (111) direction and the red box indicates the
position of the Fe atoms along the same direction.

• ad (a): This charge density slice has been calculated in the energy interval of −18
to −10 eV, where the s states of S are dominating. The s-s hybridization can be
clearly seen between the S-dimers. The complicated inner structure of the isolines
originates from the roots of the 3s function. A little bit of hybridization between
the Fe 3d and S 3s states is also visible.

• ad (b): For this charge density slice an energy interval of −8 to −2 eV has been
considered, where mainly the 3p states of S are contributing. Note the increased
content of Fe 3d character. However, the S 3p character dominates, forming typical
ppσ bonds.

• ad (c): The energy interval for this charge density slice is chosen to −1.5 to 0.5 eV,
and thus includes the VBM. The S 3p character is almost not visible any more,
instead the Fe 3d character dominates the charge density. An sp3d2 hybridization
can not be located, which indicates a more ionic bonding between Fe and S.

• ad (d): For this charge density slice an energy interval between 0.5 to 5 eV has been
used. There is still a dominating Fe 3d character. However, S 3p character coming
from ppπ∗ bonds is also observable.
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E. Charge Density Slices of Iron Pyrite

Figure E.1.: The figures are described in detail in the text. See the corresponding state-
ments to “ad (a)”, “ad (b)”, “ad (c)” and “ad (d)”.
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F. Electronic Band Structures of
Iron Pyrite within DFT+U

In these figures the orbital-resolved band structure of iron pyrite using the PBE+U
functional is shown for different values of Ueff . Following U -values have been used:
Ueff = 0 eV (upper left), Ueff = 2 eV (upper right), Ueff = 3 eV (lower left) and
Ueff = 4 eV (lower right). The red markers in the band structures indicate the Fe 3d-
character, whereas the black markers show the S 3p-character. The size of the points
correlates to the size of the orbital contribution. The high-symmetry k-points of the
k-path are denoted according to Bradley and Cracknell [131], with X ′ being equal to X.
The orbital character of the electronic band structure experiences only minor changes

when changing Ueff from 0 to 4 eV. The most obvious change concerns the relative energy
position of the S 3p states to the Fe 3d states. For a larger Ueff the energy gap between
the Fe 3d t2g and Fe 3d eg states between 1.5 and 2.5 eV above the Fermi energy εF is
increased, and thus the S 3p band at the lowest conduction band around Γ is also shifted
upwards, which leads to a larger fundamental band gap. The energy gap between the Fe
3d t2g states lying between −1.5 eV and the Fermi energy and the S 3ppπ∗ states starting
from about −2 eV becomes smaller with increasing Ueff . In particular the shape of the Fe
3d valence bands changes slightly with different Ueff due to small changes in the orbital
hybridization. Hence, the fundamental band gap is indirect for the Hubbard U values of 0
and 2 eV, but it becomes direct for larger values.
For the DFT+U calculations the fully-localized limit has been chosen, in difference to

the results presented in chapter 7. However, except of slight changes in the size of the
band gap the main messages stay the same also for the around mean-field limit.
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G. Results on Iron Pyrite Films

This appendix lists the results for all 14 iron pyrite (001), (111) and (210) films, which
have been to detailed to show them in the chapters 11 and 12. The 14 iron pyrite films are
the three terminations (001)-S, (001)-2S and (001)-Fe of the (001) orientation, the five
terminations of (111), namely (111)-Fe, (111)-S, (111)-2S, (111)-3S and (111)-4S and
finally the six terminations (210)-Fe, (210)-S, (210)-2S, (210)-Fe’, (210)-S’ and (210)-2S’
of the (210) films.

In each case a data sheet of one page displays a side and top view of the film,1 some brief
remarks about the results of the structural relaxation including a table of computational
parameters used for the calculation of the relaxations, and the orbital-resolved electronic
band structure around the Fermi energy for the relaxed, non-magnetic films.2 Additionally,
the surface energy of the unrelaxed (in brackets) and relaxed film for the same chemical
potential µS as in Fig. 11.4 (without magnetism), the size of the band gap, the orbital
character of the surface bands within the band gap region and the magnetic moments (if
any) of the top-most Fe and S atoms including the energy difference between the surface
energy calculated within a spin-polarized and non-magnetic calculation are listed.3 The
magnetic calculations have been performed for the unrelaxed films.
Finally, let me give some brief remarks about the computational parameters listed in

the tables. Most of them are already explained in chapter 5 and for those which are not
explained there I refer to reference [66] for more details. These parameters have been only
used for conducting the structural relaxation and calculating the electronic band structure.
To determine the surface energies and allow for a reasonable comparison between them,
the computational parameters have been chosen to be equal for all films. Details about
the chosen parameters can be found in the section about computational details in chapter
11. Here is a list defining the computational parameters listed in the tables:

• ∆vac: difference between the two vacuum constants D and D̃ in a.u.
1The direction of the first primitive lattice vector of the two-dimensional unit cell is denoted as a axis
and the second one as b axis in the following. The unit cells are depicted as black frames in the top
views of the films. For (001) and (210) both the top view and side view are chosen such, that the a
axis of the two-dimensional unit cell is along x, whereas in the (111) films the a and b axis, spanning
an angle of 120◦, have both an angle of 30◦ with respect to the x axis for the top and side view. The
x axis is always from left to right on the paper (c.f. 11.3). The figures have been made with the
program VESTA [130].

2Except for the (210)-Fe and (210)-2S’ film, where the bands of the unrelaxed structure are presented,
because the relaxation did not converge. The red circles in the band structure indicate Fe 3d character,
whereas the black circles represent the S 3p character. The larger the circles, the more pronounced
the orbital-character.

3In some cases the top-most Fe or S atoms split up each into two different atom types due to symmetry.
In these cases two magnetic moments are presented for the top-most layer.
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G. Results on Iron Pyrite Films

• RFe
MT: muffin-tin (MT) radius of the Fe atoms in a.u.

• nFe
r : number of radial mesh points for the description of the wave functions in MT

of Fe atoms

• logFe
r : logarithmic increment of the description of the wave functions in MT of Fe

atoms

• RS
MT, n

S
r , logS

r : same for S atoms

• Gmax: Gmax cutoffs in a.u.−1 for density and exchange-correlation potential

• kmax: plane wave cutoff in a.u.−1

• Nk: number of k-points in the irreducible Brillouin zone; note that there are two
symmetries in the (001) films, six symmetries in the (111) films and only the identity
for the (210) films

• d: thickness of the film in nm (from top-most to bottom-most atom)
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G.1. (001)-S

G.1. (001)-S

Relaxations: The top-most Fe layer relaxes about 0.2 a.u. into the bulk. All other
atoms exhibit only minor relaxations. See Fig. 11.3 for more details.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.27 2.10 719 0.016 1.90 649 0.017 12.2 10.1 4.0 50 1.7

• surface energy: 61 (73) meV/Å2

• band gap: 0.48 eV

• surface band character: mainly Fe 3d
character

• magnetism: non-magnetic, however re-
ported to be magnetic within a DFT+U
approach [19]
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G. Results on Iron Pyrite Films

G.2. (001)-2S

Relaxations: There are no major relaxations in the system, except of a slight shift of
the top-most Fe atoms into the bulk. Surprisingly when using the thinner film with about
1 nm thickness there are quite large relaxations of the top-most S atoms.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.27 2.00 705 0.016 1.80 551 0.017 12.2 10.2 4.0 50 2.0

• surface energy: 91 (116) meV/Å2

• band gap: (semi-)metal

• surface band character: mainly S 3p

• magnetism: magnetic with an about
2 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 0.5 µB, whereas the top-most
S atoms exhibit a moment of about
0.1 µB.
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G.3. (001)-Fe

G.3. (001)-Fe

Relaxations: The top-most Fe atoms relax about 0.15 a.u. into the bulk and exhibit
large in-plane displacements of about 0.4 a.u. The top-most S layer shifts 0.2 a.u. towards
the top-most Fe layer.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.26 2.10 719 0.016 1.60 649 0.017 12.2 10.1 4.0 50 1.6

• surface energy: 170 (201) meV/Å2

• band gap: metal

• surface band character: Fe 3d

• magnetism: magnetic calculation did
not converge
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G. Results on Iron Pyrite Films

G.4. (111)-Fe

Relaxations: The largest displacements are about 0.5 a.u. and lead to a significantly
smaller interlayer distance of the top-most Fe layer and the below located S layer. From
before 0.9 a.u. the interlayer distance of the two top-most layers decreases to about 0.3 a.u.
The relaxations in all other layers are negligible.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.70 641 0.017 12.3 10.3 3.6 49 1.9

• surface energy: 215 (245) meV/Å2

• band gap: metal

• surface band character: Fe 3d

• magnetism: magnetic with an about
16 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 2.52 and 1.74 µB.
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G.5. (111)-S

G.5. (111)-S

Relaxations: The top-most S layer does not exhibit any significant relaxations. The
largest relaxation with displacements of about 0.3 a.u. take place in the second and third
top-most Fe and S layer. The interlayer distance between these layers is reduced from
about 0.9 to 0.3 a.u. All other atoms do not exhibit major relaxations.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 49 2.0

• surface energy: 152 (170) meV/Å2

• band gap: metal

• surface band character: mainly Fe 3d

• magnetism: magnetic with an about
9 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 2.51 and −0.48 µB, and thus
are anti-ferromagnetically coupled.
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G. Results on Iron Pyrite Films

G.6. (111)-2S

Relaxations: Smaller relaxations than the 111-S film. The two top-most S layers
exhibit negligible relaxations. However, the Fe layer located below and next S layer show
displacements of about 0.2 a.u., leading to smaller interlayer distances. All other atoms
do not exhibit major relaxations.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 49 2.1

• surface energy: 93 (106) meV/Å2

• band gap: 0.03 eV

• surface band character: mainly Fe 3d

• magnetism: magnetic with an about
8 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 1.16 and 0.63 µB, and the top
S atom exhibits a moment of 0.21 µB.
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G.7. (111)-3S

G.7. (111)-3S

Relaxations: Except of the third top-most S layer experiencing a displacement of
0.2 a.u. in direction to the below Fe layer, there are only minor relaxations of the film.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 49 2.2

• surface energy: 61 (71) meV/Å2

• band gap: metal

• surface band character: Fe 3d with a
considerable amount of S 3p

• magnetism: magnetic with an about
4 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 0.75 and 0.37 µB, whereas the
top three layers of S atoms exhibit mo-
ments in the order of 0.1 µB.
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G. Results on Iron Pyrite Films

G.8. (111)-4S

Relaxations: Minor relaxations, except of the 4th S layer, which relaxes in direction of
the S-S dimer direction. The corresponding displacement is about 0.3 a.u.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 49 2.4

• surface energy: 87 (97) meV/Å2

• band gap: 0.04 eV

• surface band character: mainly S 3p

• magnetism: magnetic with an about
1 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 0.42 and 0.55 µB, and the top
three layers of S atoms exhibit moments
in the order of 0.2 µB
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G.9. (210)-Fe

G.9. (210)-Fe

Relaxations: Problems with convergence, therefore no results for the relaxed film.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 18 1.7

• surface energy: n.a. (128) meV/Å2

• band gap: 0.26 eV

• surface band character: Fe 3d

• magnetism: magnetic calculation did
not converge
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G. Results on Iron Pyrite Films

G.10. (210)-S

Relaxations: There are considerable in-plane relaxations for the top-most S atoms,
which exhibit displacements of about 0.8 a.u. Additionally, the top-most Fe atoms tend to
relax into the bulk-like middle again.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.34 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 18 1.9

• surface energy: 92 (109) meV/Å2

• band gap: 0.48 eV

• surface band character: mainly Fe 3d

• magnetism: magnetic with an about
1 meV/Å2 smaller surface energy; the
top-most Fe atoms have a magnetic
moment of 1.93 µB and all other atoms
exhibit magnetic moments in the order
of 0.01-0.1 µB.
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G.11. (210)-2S

G.11. (210)-2S

Relaxations: The top-most S layer exhibits quite large in-plane relaxations of about
0.5 a.u. The top-most Fe layer shifts 0.4 a.u. into the bulk.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.34 2.05 735 0.016 1.70 641 0.017 12.3 10.3 3.8 18 1.5

• surface energy: 62 (77) meV/Å2

• band gap: 0.22 eV

• surface band character: mainly Fe 3d
with small admixture of S 3p

• magnetism: magnetic with an about
5 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 1.13 µB and second top-most
Fe atoms exhibit a moment of 0.38 µB.
The top-most S atoms have a small
moment of 0.15 µB, whereas all other
atoms have moments much smaller
than 0.1 µB.
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G. Results on Iron Pyrite Films

G.12. (210)-Fe’

Relaxations: The top-most and next Fe layer relaxes into the bulk with the first layer
exhibiting displacements of about 0.2 a.u. and the second Fe layer showing twice larger
displacements. The first two top-most S layers show considerable in-plane relaxation of
about 0.2 a.u.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.34 2.10 735 0.016 1.60 641 0.017 12.3 10.3 3.6 18 1.9

• surface energy: 146 (166) meV/Å2

• band gap: (semi-)metal

• surface band character: Fe 3d

• magnetism: magnetic calculations did
not converge
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G.13. (210)-S’

G.13. (210)-S’

Relaxations: The top-most S layer does not exhibit significant relaxations. The top-
most Fe atoms relax about 0.2 a.u. into the bulk, and the below lying S layer shows
in-plane relaxations of the same order.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.28 2.00 705 0.016 1.80 551 0.017 12.2 10.2 4.0 39 1.5

• surface energy: 89 (103) meV/Å2

• band gap: 0.43 eV

• surface band character: mainly Fe 3d

• magnetism: magnetic with an about
1 meV/Å2 smaller surface energy; top-
most Fe atoms have a magnetic mo-
ment of 2.02 µB, whereas all other
atoms show magnetic moments in the
order of 0.01 µB.
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G. Results on Iron Pyrite Films

G.14. (210)-2S’

Relaxations: Problems with convergence, therefore no results for the relaxed film.

∆vac RFe
MT nFe

r logFe
r RS

MT nS
r logS

r Gmax kmax Nk d
3.33 2.10 735 0.016 1.80 641 0.017 12.3 10.3 3.6 18 1.7

• surface energy: n.a. (132) meV/Å2

• band gap: metal

• surface band character: Fe 3d with ad-
mixture of S 3p

• magnetism: magnetic calculations did
not converge
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