000202789 001__ 202789
000202789 005__ 20210129220230.0
000202789 0247_ $$2doi$$a10.1103/PhysRevLett.115.036602
000202789 0247_ $$2ISSN$$a0031-9007
000202789 0247_ $$2ISSN$$a1079-7114
000202789 0247_ $$2Handle$$a2128/9017
000202789 0247_ $$2WOS$$aWOS:000357864800018
000202789 0247_ $$2altmetric$$aaltmetric:3801067
000202789 037__ $$aFZJ-2015-04965
000202789 041__ $$aEnglish
000202789 082__ $$a550
000202789 1001_ $$0P:(DE-Juel1)159253$$aGayles, Jacob$$b0$$eCorresponding author
000202789 245__ $$aDzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase of Mn 1 − x Fe x Ge
000202789 260__ $$aCollege Park, Md.$$bAPS$$c2015
000202789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438674605_16996
000202789 3367_ $$2DataCite$$aOutput Types/Journal article
000202789 3367_ $$00$$2EndNote$$aJournal Article
000202789 3367_ $$2BibTeX$$aARTICLE
000202789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202789 3367_ $$2DRIVER$$aarticle
000202789 520__ $$aWe carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn1−xFexGe alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.
000202789 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000202789 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000202789 588__ $$aDataset connected to CrossRef
000202789 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, F.$$b1
000202789 7001_ $$0P:(DE-Juel1)138253$$aSchena, Timo$$b2
000202789 7001_ $$0P:(DE-Juel1)151228$$aLani, G.$$b3
000202789 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, P.$$b4
000202789 7001_ $$0P:(DE-HGF)0$$aDuine, R. A.$$b5
000202789 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b6
000202789 7001_ $$0P:(DE-HGF)0$$aSinova, J.$$b7
000202789 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Y.$$b8
000202789 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.036602$$gVol. 115, no. 3, p. 036602$$n3$$p036602$$tPhysical review letters$$v115$$x1079-7114$$y2015
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.pdf$$yOpenAccess
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.gif?subformat=icon$$xicon$$yOpenAccess
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202789 8564_ $$uhttps://juser.fz-juelich.de/record/202789/files/PhysRevLett.115.036602.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202789 909CO $$ooai:juser.fz-juelich.de:202789$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000202789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202789 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202789 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202789 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202789 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202789 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202789 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000202789 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202789 9141_ $$y2015
000202789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202789 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000202789 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000202789 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000202789 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000202789 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000202789 9801_ $$aFullTexts
000202789 980__ $$ajournal
000202789 980__ $$aVDB
000202789 980__ $$aFullTexts
000202789 980__ $$aUNRESTRICTED
000202789 980__ $$aI:(DE-Juel1)IAS-1-20090406
000202789 980__ $$aI:(DE-Juel1)PGI-1-20110106
000202789 980__ $$aI:(DE-82)080009_20140620
000202789 981__ $$aI:(DE-Juel1)PGI-1-20110106