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We predict the occurrence of a novel type of atomic-scale spin lattice in an Fe monolayer on the Ir(001) surface.

Based on density functional theory calculations we parametrize a spin Hamiltonian and solve it numerically using

Monte Carlo simulations. We find the stabilization of a three-dimensional spin structure arranged on a (3 × 3)

lattice. Despite an almost vanishing total spin magnetization we predict the emergence of orbital magnetization

and large anomalous Hall effect, to which there is a significant topological contribution purely due to the real

space spin texture at the surface.
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Localized stable spin textures such as skyrmions or chiral

domain walls have attracted much attention recently due to

their unique topological and transport properties [1–3] and

potential applications in spintronics [4–7]. A key ingredient

for their occurrence is the Dzyaloshinskii-Moriya (DM)

interaction [8,9], which arises due to spin-orbit interaction

in systems with broken inversion symmetry, as in the bulk of

noncentrosymmetric crystals or at surfaces and interfaces. Hall

effects play an important role in these systems. For instance,

the spin-orbit torque originating from the spin Hall effect

drives the motion of chiral domain walls in ultrathin films

very efficiently and very high speeds have been reported [2,3].

The topological Hall effect (THE), defined as the contribution

to the Hall resistivity due to chiral spin texture, serves as one

of the main tools to pinpoint the skyrmion phase in the phase

diagram of bulk alloys such as MnSi or FeGe [10–15].

The discovery of a nanoskyrmion lattice in an Fe monolayer

(ML) on the Ir(111) surface [16] opened an entirely new class

of materials for magnetic skyrmions—transition-metal films

and interfaces—which are of prime interest for spintronic

devices [6]. Such systems have the benefit of allowing us

to engineer the skyrmion properties by film composition

and structure [17,18] and to address individual magnetic

skyrmions [16,19–21]. However, very little is known both

experimentally and theoretically about Hall effects in such

complex nanometer-scale spin textures at surfaces and inter-

faces. Another open question concerns the diversity of the class

of topologically distinct spin textures which can arise in these

systems. In this respect an appealing idea is the realization

of antiferromagnetic skyrmions [22,23], which are weakly

susceptible to external fields and promise faster dynamics

[24,25]; however, real systems are missing so far.

Here, we predict a new type of a complex spin lattice at a

surface which both exhibits unique topological and transport

properties and may serve as a possible seed structure for

sought-after antiferromagnetic skyrmions [22,23]. Namely,

using density functional theory (DFT) and Monte Carlo

techniques, we find a complex three-dimensional spin structure

with angles close to 120◦ between adjacent spins on a (3 × 3)
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lattice for an Fe ML on Ir(001) [26]. In contrast to systems

explored so far for magnetic skyrmions the local exchange

interaction is antiferromagnetic in this system, and it can be

considered as an antiferromagnetic twin of the nanoskyrmion

spin structure formed in the Fe ML on Ir(111) [16]. The

nontrivial topological nature of the novel spin lattice with

almost compensated total magnetization manifests in the large

anomalous Hall effect (AHE). Moreover, taking the obtained

(3 × 3) spin lattice as an example, we show that complex

real-space topology of spin textures at metallic transition-metal

surfaces can completely replace the spin-orbit interaction

in giving rise to large AHE and orbital magnetization—

phenomena, traditionally viewed as key manifestations of

spin-orbit interaction in solids.

Nanoscale spin textures at transition-metal interfaces

[16,17,27,28] can be treated employing a Hamiltonian on the

discrete atomic lattice

H = −
∑

ij

Jij (Mi · Mj ) −
∑

ij

Dij · (Mi × Mj )

−
∑

ijkl

Kijkl[(Mi · Mj )(Mk · Ml) + · · · ]

−
∑

ij

Bij (Mi · Mj )2 +
∑

i

K⊥

(

Mz
i

)2
, (1)

which describes the exchange interaction (Jij ), the DM interac-

tion (Dij ), the four-spin interaction (Kijkl), and the biquadratic

exchange (Bij ) between the magnetic moments Mi of atoms

at sites Ri as well as a uniaxial magnetocrystalline anisotropy

(K⊥). The interplay of these interactions can result in complex

noncollinear spin structures. The nanoskyrmion lattice of

Fe/Ir(111) arises due to the weakened ferromagnetic exchange

and is enforced by the DM and the four-spin interaction [16].

A single atomic Pd overlayer on Fe/Ir(111) strengthens the

ferromagnetic exchange [17] such that individual magnetic

skyrmions with a diameter of a few nanometers can be realized

[21]. Therefore, an understanding of the relative strength of

the competing interactions is essential to tailor skyrmions

with desired properties in such type of systems by interface

engineering [18].

For the Fe ML on Ir(001), we used DFT to obtain

the parameters for the Hamiltonian given by Eq. (1). We
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FIG. 1. (Color online) Energy dispersion of homogeneous flat

spin spirals for Fe/Ir(001). The energies E(q) (filled circles) are

calculated via DFT along the high-symmetry lines of the two-

dimensional Brillouin zone and given with respect to the c(2 × 2)

antiferromagnetic state. The solid lines are fits to the Heisenberg

model with up to sixth-nearest neighbors [44]. The inset shows the

energy dispersion close to the M̄ point for left- and right-rotating

spirals including SOC, i.e., the effect of the DM interaction.

applied the projector augmented wave (PAW) method [29] as

implemented in the VASP code [30,31]. Computational details

are given in the Supplemental Material [32] (which refers to

Refs. [16,29,30,33–43]).

To determine the exchange constants Jij , we have con-

sidered flat spin spirals in which the magnetic moments are

confined in a plane with a constant angle between moments

at adjacent lattice sites propagating along high-symmetry di-

rections of the surface. Such a spin spiral can be characterized

by a wave vector q from the two-dimensional Brillouin zone

(BZ) and the magnetic moment of an atom at site Ri , given by

Mi = M( sin (qRi), cos (qRi),0) with the size of the magnetic

moment M .

The calculated energy dispersion E(q) of spin spirals for

Fe/Ir(001) is displayed in Fig. 1. At the high-symmetry points

we obtain collinear spin structures: the ferromagnetic state at

Ŵ̄, the c(2 × 2) antiferromagnetic state at M̄, and the p(2 × 1)

antiferromagnetic state at X̄. Clearly, the c(2 × 2) antifer-

romagnetic state is lowest in energy among the considered

collinear states in agreement with previous DFT studies [45].

The energy dispersion is very flat in the vicinity of the M̄ point

due to the frustration of exchange interactions. A fit to the

Heisenberg model, i.e., the first term in Eq. (1), with Jij ’s up

to sixth-nearest neighbors [44] leads to an excellent description

as shown by the solid line in Fig. 1 [46].

Note that the energy dispersion of Fe/Ir(001) is almost

inverted with respect to Fe/Ir(111) where the energy dispersion

is flat around the Ŵ̄ point, i.e., the ferromagnetic state [16,47].

Therefore, we can also expect complex three-dimensional

spin structures to occur here but of different type due to the

nearest-neighbor antiferromagnetic exchange [37,48].

By taking spin-orbit coupling (SOC) into account, we can

determine the magnetocrystalline anisotropy energy (MAE)

defined as the energy difference between configurations with

different orientation of the magnetization. For the collinear

state of lowest energy, i.e., the c(2 × 2) antiferromagnetic state,

we found an easy out-of-plane axis with a MAE of K⊥ =

−0.25 meV.

At a surface SOC also induces the DM interaction [49,50].

In order to determine its strength, we have calculated the

total energy of a 120◦ spin spiral along the ŴM direction

in a (3 × 1) supercell including SOC both with a left-handed

and a right-handed rotational sense. We find that spin spirals

with a right-handed rotational sense are lower by 7.3 meV/Fe

atom. This energy difference allows us to calculate the

value of the DM interaction within the nearest-neighbor

approximation which results in a value of D1 = 1.5 meV.

Including the DM interaction into the energy dispersion of

spin spirals leads to an energy minimum at an angle of

about 138◦ between adjacent spins as shown in the inset of

Fig. 1.

From the energy dispersion of spin spirals, only the

Heisenberg-type exchange can be obtained. The impact of

higher-order spin interactions can be determined by con-

sidering superposition states of two spin spirals. If only

Heisenberg-type exchange played a role all of these spin states

would be degenerate in energy. However, our DFT calculations

show considerable energy differences on the order of a few

meV/Fe-atom (see Supplemental Material [32]). From these

calculations, we determine that the nearest-neighbor four-spin,

K4spin, and biquadratic, B, interaction fulfill the condition

2K4spin + B = 0.7 meV.

The energy functional Eq. (1) with the parameters from

DFT can be minimized using Monte Carlo simulations based

on the Metropolis algorithm. We have chosen a spin lattice

of (66 × 66) spins and used periodic boundary conditions.

We have checked the impact of the lattice size and of using

open boundary conditions and found no effect on the obtained

ground state. In order to explore the impact of the higher-order

spin interactions, which are not univocally determined by our

DFT calculations as discussed above, we have chosen different

values of B and K4spin that are in accordance with the condition

given above. We changed the value of the four-spin interaction

in steps of 0.1 meV and the biquadratic interaction and J3 were

modified accordingly [44].

We found three different types of ground states depending

on the value of K4spin as shown in Fig. 2. A large biquadratic

interaction results in a so-called up-up-down-down (uudd)

state since a collinear alignment of neighboring spins is

preferred. However, if the biquadratic interaction is reduced

we find an atomic-scale noncollinear (3 × 3) spin lattice that

is stabilized by the four-spin term. For a value of K4spin >

−0.4 meV the four-spin term cannot couple the spin spirals

and we obtain a spin spiral ground state with an angle of about

140◦ between adjacent spins.

As shown in Fig. 2, the novel (3 × 3) spin lattice can occur

for a large range of values of the four-spin interaction. Its spin

structure is shown in Fig. 3. The spins at the corners of the

unit cell point upwards perpendicular to the surface while the

spins along the sides rotate with an angle of ≈123◦ from the

surface normal. The four spins in the center of the cell point

towards the corners and with an angle of ≈22◦ out of the film

plane.
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FIG. 2. (Color online) Spin structures of lowest energy obtained

via Monte Carlo simulations as a function of the strength of the four-

spin interaction. The biquadratic interaction is changed according to

the condition 2K4spin + B = 0.7 meV from the DFT calculations. The

sketches only display a small section of the actually simulated spin

lattice. Units in the figure are in meV.

The occurrence of this three-dimensional spin structure can

be understood from the interplay of the different interactions.

The combination of exchange and DM interaction leads to

a spin spiral with an angle of approximately 120◦ between

adjacent spins and thus a periodicity of 3 atoms (cf. Fig. 1).

For Fe biatomic chains on the (5 × 1) reconstructed Ir(001)

surface, such a spin spiral state has been experimentally

observed [20]. In the Fe monolayer on Ir(001), the four-spin

interaction can couple these spin spirals into a square lattice.

Note that there is an opposite rotational sense of the spin

rotation along the side and the diagonal of the unit cell.

This results from the antiferromagnetic exchange coupling

between nearest neighbors which is stronger than the DM

interaction that would prefer a unique rotational sense along

both directions.

FIG. 3. (Color online) (a) Side view and (b) top view of the

proposed atomic-scale (3 × 3) spin lattice. Two unit cells are shown.

Due to the competition of DMI and Heisenberg exchange,

the spin lattice is extremely stable in an external magnetic

field and cannot be destroyed up to 80 T as found in our MC

simulations. The transition temperature to the paramagnetic

state is obtained at approximately 60 K. We propose that

tuning the antiferromagnetic exchange interaction in this

system by interface engineering [17,18] may open the route to

antiferromagnetic skyrmions.

The topological Hall effect in complex large-scale magnetic

structures is normally described assuming the adiabatic view-

point of infinitesimally slowly varying spin texture [1]. For

skyrmions, the topological Hall resistivity can be factorized

into the product of an emergent magnetic field, which is

the direct consequence of the nonzero topological charge,

and the topological Hall coefficient Rtop, which can be

determined from the electronic structure of the ferromagnetic

crystal [10,13,14]. On the other side of the length scale, the

chirality-driven contribution to the AHE has been predicted

and observed in bulk strongly frustrated correlated oxides and

bulk antiferromagnets, which exhibit noncollinear magnetic

order on the scale of 1 nm [51–58].

To investigate whether the (3 × 3) spin texture results

in nontrivial transport properties, we compute from first

principles [32] the intrinsic Berry curvature contribution to

the xy component of the anomalous Hall conductivity (AHC)

in the system σ AH
3×3 = e2

�

(2π)2

∫

BZ
�xy(k)dk [59], where

�xy(k) =
∑

n<EF

∑

m�=n

2Im
〈ψnk|vx |ψmk〉〈ψmk|vy |ψnk〉

(εmk − εnk)2
(2)

is the Berry curvature of occupied states with ψnk as the

Bloch states with corresponding energies εnk, and vi is the

ith Cartesian component of the velocity operator. The results

of our calculations for σ AH
3×3, presented in Fig. 4 as a function of

the substrate thickness, indicate a sizeable AHE in the (3 × 3)

spin lattice state with the magnitude similar to that of bulk

transition-metal ferromagnets [59–61] and much larger than

that observed in bulk oxides [51–58]. The large variation of
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FIG. 4. (Color online) Top: BZ distribution of the Berry curva-

ture without (left) and with (right) SOC for Fe monolayer in (3 × 3)

state with one layer of Ir substrate, superimposed with the real-space

distribution of the spins (blue arrows). Bottom: Calculated values of

σ AH
3×3 as function of the Ir substrate thickness.

020401-3



RAPID COMMUNICATIONS

M. HOFFMANN et al. PHYSICAL REVIEW B 92, 020401(R) (2015)

the AHC with thickness, apparent from Fig. 4, is typical for

such effects as the AHE, spin Hall effect, or the spin-orbit

torque in the limit of ultrathin films [60,62,63].

In the context of thin magnetic layers of transition metals

on paramagnetic substrates, the emergence of the large σ AH
3×3

appears rather surprising, since the total magnetization of the

system in the (3 × 3) state is almost vanishing. By artificially

rotating the spin moments on the Fe atoms slightly away from

their equilibrium directions we acquire a complete suppression

of the magnetization and observe that the values of σ AH
3×3 stay

very close to those with small uncompensated magnetization.

This clearly distinguishes our case from the case of the AHE in

collinear magnets, which relies on nonvanishing macroscopic

magnetization and the presence of SOC [59].

Another remarkable observation is that a large contribution

to σ AH
3×3 is provided even without taking the SOC into account,

as apparent from Fig. 4, where the values of the intrinsic

AHC, computed with the SOC explicitly switched off in our

calculations, are presented in comparison with σ AH
3×3. Since

the AHE vanishes for any collinear magnetic state of our

system without SOC, it allows us to define the contribution

to σ AH
3×3 without SOC as the “topological” contribution to

the AHC, σ TH
3×3, which stems purely from the spin texture

in real space, and which does not rely on the presence of

SOC. The particular symmetry of our system which results

in nonvanishing σ TH
3×3 also gives rise to a finite local scalar

spin chirality Mi · (Mj × Mk), nonvanishing when integrated

over the unit cell [56]. To distinguish our case from the

case of large two-dimensional skyrmions and bulk frustrated

oxides, for which topological contribution to the Hall effect

in some cases can be described neglecting the spin-orbit

effects [13,14,55–57], for our class of systems we call the

corresponding anomalous Hall effect without SOC the surface

topological Hall effect. Our calculations suggest the existence

of surface THE in transition-metal multilayers.

Ultimately, the large values of σ TH
3×3 are due to a direct

effect of the nontrivial real-space distribution of spin on

reciprocal-space distribution of the AHC, given by the Berry

curvature [64]. To convince ourselves of this explicitly, we plot

in Fig. 4 the Brillouin zone distribution of the Berry curvature

computed with and without SOC for the system of an Fe layer

in the (3 × 3) spin state on one layer of the Ir substrate. As

apparent from the case without SOC, there is a very close

correlation of the Berry curvature distribution with the spin-

distribution in real-space, while the effect of SOC is to provide

an additional fine structure to this distribution stemming from

SOC-induced band splittings in the vicinity of the Fermi level.

Thus the surface THE is more complex than the THE in

large-scale skyrmions for which the topological contribution

to the THE—the emergent field—can be separated from the

electronic effects in a collinear host encoded in Rtop [10,14].

The surface THE arises from a close intertwining of the real

and reciprocal space topology, which together play a role of

a single multidimensional topological object with nontrivial

transport properties.

The microscopic origin of the competition between non-

collinearity and spin-orbit interaction for the AHE in such

nontrivial surface spin textures as considered here presents

an exciting direction to study both theoretically and ex-

perimentally [65,66]. In particular, we conjecture that the

surface THE is commonly an important part of the AHE

exhibited by complex spin structures at surfaces, such as

nanoskyrmions [16]. One of its prominent manifestations

would be the contribution to the orbital magnetization at the

surface which does not originate in spin-orbit coupling [58,67].

The orbital magnetization and the Hall effect have the same

symmetry and indeed, our calculations reveal the formation of

nonvanishing local atomic orbital moments at the surface of

our system without spin-orbit. Without SOC, the magnitude

of the maximal local orbital moment among the Fe atoms

ranges from −0.13 µB to 0.03 µB depending on the substrate

thickness, which is similar in magnitude to that obtained with

spin-orbit interaction included. At the same time, the total

orbital moment as a function of substrate thickness, obtained

as a sum over all atomic contributions in the system, ranges

from −0.07 µB to +0.04 µB when the SOC is not considered,

which is to be compared to the range of −0.13 µB to +0.13 µB

for the total orbital moment with SOC. Noticeably, the values

of the total orbital moment without SOC are by far dominated

by the contribution from the magnetic overlayer. Intuitively,

this phenomenon can be understood from a simple picture

in which the effect of the noncollinear environment of a

given spin is similar to that of an effective spin-dependent

magnetic field, which couples to orbital degrees of freedom

and gives rise to the orbital moment. Such “topological” orbital

magnetization could be readily addressed experimentally by

surface techniques.
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(2009).

[20] M. Menzel, Y. Mokrousov, R. Wieser, J. E. Bickel, E. Vedme-
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