000202808 001__ 202808
000202808 005__ 20240711085550.0
000202808 0247_ $$2doi$$a10.1007/s11581-014-1273-2
000202808 0247_ $$2ISSN$$a0947-7047
000202808 0247_ $$2ISSN$$a1862-0760
000202808 0247_ $$2WOS$$aWOS:000351508800016
000202808 037__ $$aFZJ-2015-04969
000202808 041__ $$aEnglish
000202808 082__ $$a530
000202808 1001_ $$0P:(DE-Juel1)145807$$aAl Daroukh, M.$$b0$$eCorresponding author
000202808 245__ $$aPost-test analysis of electrode-supported solid oxide electrolyser cells
000202808 260__ $$aBerlin$$bSpringer$$c2015
000202808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440587444_27021
000202808 3367_ $$2DataCite$$aOutput Types/Journal article
000202808 3367_ $$00$$2EndNote$$aJournal Article
000202808 3367_ $$2BibTeX$$aARTICLE
000202808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202808 3367_ $$2DRIVER$$aarticle
000202808 520__ $$aThree solid oxide cells have been investigated after long-term high temperature electrolysis to explain the phenomena of accelerated degradation. These cells contain a Ni-YSZ cermet (Ni-yttria-stabilised-zirconia) as hydrogen electrode (cathode), yttria-stabilised-zirconia (YSZ) as electrolyte, Ce0.8Gd0.2O1.9 (CGO) as diffusion barrier layer and La0.58Sr0.4Co0.2Fe0.8O3 (LSCF) as oxygen electrode (anode). Cell 1, cell 2 and cell 3 were tested continuously at about 770 °C, with a current density of −1 A cm−2 and 80 % H2O of absolute humidity for 9000, 1770 and 1460 h, respectively. It was found that in cell 1, the degradation rate was about 2.2 % per 1000 h, in cell 2 the degradation rate increased to 3.4 % per 1000 h and in cell 3 the degradation rate was 2.6 % per 1000 h. The mode of cell degradation was also investigated as a function of the cell fabrication in the four layers system (anode/diffusion barrier layer/electrolyte/cathode). An intergranular fractured surface along the grain boundaries of the electrolyte, and the formation of porous structures throughout the thickness of the electrolyte were observed in cell 1. LSCF, as the oxygen electrode, showed compositional fluctuations with a changed perovskite composition and formation of cobalt oxide. This phenomenon reduces the electrical conductivity and, probably, also the catalytic properties. The hydrogen electrode did not show major changes in all the three cells tested. Cells 2 and 3 showed similar features as observed for cell 1, except the fact that they retained the electrolyte structure without intergranular fracture and formation of porosity after continuous testing for long duration.
000202808 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000202808 588__ $$aDataset connected to CrossRef
000202808 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b1$$ufzj
000202808 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b2$$ufzj
000202808 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$ufzj
000202808 773__ $$0PERI:(DE-600)2226746-3$$a10.1007/s11581-014-1273-2$$gVol. 21, no. 4, p. 1039 - 1043$$n4$$p1039 - 1043$$tIonics$$v21$$x1862-0760$$y2015
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.pdf$$yRestricted
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.gif?subformat=icon$$xicon$$yRestricted
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202808 8564_ $$uhttps://juser.fz-juelich.de/record/202808/files/art%253A10.1007%252Fs11581-014-1273-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202808 909CO $$ooai:juser.fz-juelich.de:202808$$pVDB
000202808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145807$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202808 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000202808 9141_ $$y2015
000202808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIONICS : 2013
000202808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202808 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202808 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202808 920__ $$lyes
000202808 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202808 980__ $$ajournal
000202808 980__ $$aVDB
000202808 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202808 980__ $$aUNRESTRICTED
000202808 981__ $$aI:(DE-Juel1)IMD-2-20101013