001     202842
005     20210129220237.0
024 7 _ |a 10.1039/C5CP01886B
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 2128/8989
|2 Handle
024 7 _ |a WOS:000355632900015
|2 WOS
024 7 _ |a altmetric:4132030
|2 altmetric
024 7 _ |a pmid:25990541
|2 pmid
037 _ _ |a FZJ-2015-05001
082 _ _ |a 540
100 1 _ |a Plekan, Oksana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Functionalisation and immobilisation of an Au(110) surface via uracil and 2-thiouracil anchored layer
260 _ _ |a Cambridge
|c 2015
|b RSC Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1437402640_27745
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We study surface functionalisation by uracil and 2-thiouracil, and immobilisation of several DNA moieties on functionalised gold surfaces. The combination of X-ray photoelectron and near-edge X-ray absorption spectroscopy allowed us to obtain a complete understanding of complex interfacial processes, starting from adsorption of biomolecules onto the metallic surface and progressing towards a specific surface functionality for interactions with other biologically related adsorbates. Au(110) surfaces were functionalised by deposition of uracil and 2-thiouracil molecules under vacuum conditions, and then tested for their selectivity by immobilisation of different DNA moieties deposited from aqueous solutions. We observed that adenine, adenosine, and RNA polymer (polyadenylic acid) from saturated solutions were immobilized successfully on the 2-thiouracil, but those from dilute (1%) solutions were not. However, cytosine failed to adsorb even from saturated solution. The chemical states of the biologically related adsorbates were investigated and the geometrical orientation of uracil and 2-thiouracil on the Au(110) surface was determined using both spectroscopic techniques.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Feyer, Vitaliy
|0 P:(DE-Juel1)145012
|b 1
|e Corresponding author
700 1 _ |a Cassidy, Andrew
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lyamayev, Victor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tsud, Nataliya
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ptasińska, Sylwia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Reiff, Sara
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Acres, Rober G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Prince, Kevin C.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1039/C5CP01886B
|g Vol. 17, no. 23, p. 15181 - 15192
|0 PERI:(DE-600)1476244-4
|n 23
|p 15181 - 15192
|t Physical chemistry, chemical physics
|v 17
|y 2015
|x 1463-9084
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/202842/files/c5cp01886b.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:202842
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145012
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21