000202843 001__ 202843
000202843 005__ 20210129220238.0
000202843 037__ $$aFZJ-2015-05002
000202843 041__ $$aEnglish
000202843 0881_ $$aPoS(LATTICE2014)168
000202843 088__ $$2Other$$aPoS(LATTICE2014)168
000202843 1001_ $$0P:(DE-HGF)0$$aFlynn, Jonathan$$b0$$eCorresponding author
000202843 1112_ $$a32nd International Symposium on Lattice Field Theory$$cBrookhaven$$d2014-06-23 - 2014-06-28$$gLATTICE2014$$wUSA
000202843 245__ $$aNonperturbative renormalisation for low moments of light-meson distribution amplitudes
000202843 260__ $$c2014
000202843 300__ $$a7 p.
000202843 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1437481748_27744
000202843 3367_ $$0PUB:(DE-HGF)15$$2PUB:(DE-HGF)$$aInternal Report$$mintrep
000202843 3367_ $$033$$2EndNote$$aConference Paper
000202843 3367_ $$2ORCID$$aCONFERENCE_PAPER
000202843 3367_ $$2DataCite$$aOutput Types/Conference Paper
000202843 3367_ $$2DRIVER$$aconferenceObject
000202843 3367_ $$2BibTeX$$aINPROCEEDINGS
000202843 4900_ $$aProceedings of Science
000202843 520__ $$aWe discuss nonperturbative renormalisation of the leading-twist flavour non-singlet operators needed for the calculation of the first and second moments of light-meson distribution ampli- tudes. On the lattice we use a regularisation-independent symmetric (or non-exceptional) mo- mentum scheme, RI/SMOM, which, for the second moment, allows us to include mixing with a total-derivative operator. We calculate the conversion functions needed to connect the RI/SMOM results to MSbar
000202843 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000202843 588__ $$aDataset connected to INSPIRE
000202843 650_7 $$2INSPIRE$$arenormalization: nonperturbative
000202843 650_7 $$2INSPIRE$$adistribution amplitude
000202843 650_7 $$2INSPIRE$$aoperator: mixing
000202843 650_7 $$2INSPIRE$$aparton: distribution function: calculated
000202843 650_7 $$2INSPIRE$$api: generalized parton distribution
000202843 650_7 $$2INSPIRE$$aparton: distribution function: moment
000202843 7001_ $$0P:(DE-HGF)0$$aArthur, Rudy$$b1
000202843 7001_ $$0P:(DE-HGF)0$$aBoyle, Peter$$b2
000202843 7001_ $$0P:(DE-Juel1)143606$$aBrömmel, Dirk$$b3
000202843 7001_ $$0P:(DE-HGF)0$$aJüttner, Andreas$$b4
000202843 7001_ $$0P:(DE-HGF)0$$aSachrajda, Chris$$b5
000202843 7001_ $$0P:(DE-HGF)0$$aRae, Thomas$$b6
000202843 8564_ $$uhttp://pos.sissa.it/archive/conferences/214/168/LATTICE2014_168.pdf
000202843 909CO $$ooai:juser.fz-juelich.de:202843$$pVDB
000202843 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143606$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202843 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000202843 9141_ $$y2015
000202843 920__ $$lyes
000202843 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000202843 980__ $$acontrib
000202843 980__ $$aVDB
000202843 980__ $$aintrep
000202843 980__ $$aI:(DE-Juel1)JSC-20090406
000202843 980__ $$aUNRESTRICTED