000202853 001__ 202853
000202853 005__ 20240708132830.0
000202853 037__ $$aFZJ-2015-05005
000202853 041__ $$aEnglish
000202853 1001_ $$0P:(DE-Juel1)138664$$aTokariev, Oleg A.$$b0$$eCorresponding author
000202853 1112_ $$a14th International Conference of the European Ceramic Society$$cToledo$$d2015-06-21 - 2015-06-25$$gECerS 2015$$wSpain
000202853 245__ $$aA first prototype of high-temperature rechargeable oxide batteries (ROB) with iron-based storage material
000202853 260__ $$c2015
000202853 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1442822787_28363$$xAfter Call
000202853 3367_ $$033$$2EndNote$$aConference Paper
000202853 3367_ $$2DataCite$$aOther
000202853 3367_ $$2ORCID$$aLECTURE_SPEECH
000202853 3367_ $$2DRIVER$$aconferenceObject
000202853 3367_ $$2BibTeX$$aINPROCEEDINGS
000202853 520__ $$aThe present investigation describes the results of a kinetic study of porous storage material for a novel high-temperature rechargeable oxide battery (ROB). The new planar battery design consists of a regenerative solid oxide cell and a storage redox unit with a stagnant hydrogen/steam atmosphere and embedded porous Fe-based material which has to provide high oxygen-ion storage capacity, good reaction kinetics and long-term stability.During long-term exposure in the alternating redox atmosphere at 800 °C, the structure of the storage material shows degradation effects like structural coarsening and outward iron diffusion, thus making the storage element incapable of storing the required amount of oxygen during continuous operation of the rechargeable battery. The porous Fe/Fe-oxide storage material is therefore supported by inert or reactive oxides. Addition of inert oxides (e.g. ZrO2) in sufficient amount reduces the microstructural degradation, however results in a substantial decrease in storage capacity. Among the added oxides forming mixed oxides with Fe in the relevant oxygen partial pressure range of ~ 10-18 – 10-20 bar, the most promising results were obtained with additions of MgO and CaO. During the oxidation step these oxides form mixed oxides with Fe oxide which in turn change composition during the reduction step. In this way a framework is obtained which reduces sintering and outward Fe migration in the storage component.In addition to these studies, supplementary research of the iron-based storage material was carried out aiming at microstructural optimization of porosity and powder morphology. Also, more feasible manufacturing methods such as tape casting and extrusion were successfully implemented for production of storage elements. The storage materials with the best results regarding capacity, efficiency, and lifetime were used during pilot battery testing to examine material behavior under real operating conditions, showing ~ 200 full charge-discharge cycles of up to 70 minutes each with a current density of 150 mA/cm2.
000202853 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000202853 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000202853 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000202853 7001_ $$0P:(DE-Juel1)156166$$aBerger, Cornelius$$b1$$ufzj
000202853 7001_ $$0P:(DE-Juel1)145679$$aOrzessek, Peter$$b2
000202853 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b3
000202853 7001_ $$0P:(DE-Juel1)145945$$aFang, Qingping$$b4
000202853 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b5
000202853 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b6
000202853 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b7
000202853 909CO $$ooai:juser.fz-juelich.de:202853$$pVDB
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138664$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156166$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145679$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145945$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202853 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000202853 9141_ $$y2015
000202853 920__ $$lyes
000202853 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202853 980__ $$aconf
000202853 980__ $$aVDB
000202853 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202853 980__ $$aUNRESTRICTED
000202853 981__ $$aI:(DE-Juel1)IMD-2-20101013