000202856 001__ 202856
000202856 005__ 20210129220239.0
000202856 0247_ $$2doi$$a10.1021/acs.nanolett.5b00765
000202856 0247_ $$2ISSN$$a1530-6984
000202856 0247_ $$2ISSN$$a1530-6992
000202856 0247_ $$2WOS$$aWOS:000357964100027
000202856 0247_ $$2altmetric$$aaltmetric:4186268
000202856 0247_ $$2pmid$$apmid:26060894
000202856 0247_ $$2Handle$$a2128/22762
000202856 037__ $$aFZJ-2015-05008
000202856 082__ $$a540
000202856 1001_ $$0P:(DE-HGF)0$$aWeber, P.$$b0
000202856 245__ $$aSwitchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States
000202856 260__ $$aWashington, DC$$bACS Publ.$$c2015
000202856 3367_ $$2DRIVER$$aarticle
000202856 3367_ $$2DataCite$$aOutput Types/Journal article
000202856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453101736_16480
000202856 3367_ $$2BibTeX$$aARTICLE
000202856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202856 3367_ $$00$$2EndNote$$aJournal Article
000202856 520__ $$aWe report transport measurements on a quantum dot in a partly suspended carbon nanotube. Electrostatic tuning allows us to modify and even switch “on” and “off” the coupling to the quantized stretching vibration across several charge states. The magnetic-field dependence indicates that only the two-electron spin-triplet excited state couples to the mechanical motion, indicating mechanical coupling to both the valley degree of freedom and the exchange interaction, in contrast to standard models.
000202856 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000202856 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x1
000202856 588__ $$aDataset connected to CrossRef
000202856 7001_ $$0P:(DE-Juel1)157824$$aCalvo, H. L.$$b1
000202856 7001_ $$0P:(DE-Juel1)156386$$aBohle, J.$$b2
000202856 7001_ $$0P:(DE-HGF)0$$aGoß, K.$$b3
000202856 7001_ $$0P:(DE-Juel1)161412$$aMeyer, C.$$b4
000202856 7001_ $$0P:(DE-Juel1)131026$$aWegewijs, M. R.$$b5
000202856 7001_ $$0P:(DE-Juel1)142024$$aStampfer, C.$$b6$$eCorresponding author
000202856 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.5b00765$$gVol. 15, no. 7, p. 4417 - 4422$$n7$$p4417 - 4422$$tNano letters$$v15$$x1530-6992$$y2015
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.pdf$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.gif?subformat=icon$$xicon$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/acs.nanolett.5b00765.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/1506.05137.pdf$$yOpenAccess
000202856 8564_ $$uhttps://juser.fz-juelich.de/record/202856/files/1506.05137.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202856 909CO $$ooai:juser.fz-juelich.de:202856$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000202856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161412$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131026$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202856 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000202856 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x1
000202856 9141_ $$y2015
000202856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2013
000202856 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2013
000202856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202856 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000202856 980__ $$ajournal
000202856 980__ $$aVDB
000202856 980__ $$aUNRESTRICTED
000202856 980__ $$aI:(DE-Juel1)PGI-2-20110106
000202856 9801_ $$aFullTexts