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Abstract

We report transport measurements on a quantum dot in a partly suspended carbon nan-

otube. Electrostatic tuning allows us to modify and even switch “on” and “off” the coupling

to the quantized stretching vibration across several charge states. The magnetic-field depen-

dence indicates that only the two-electron spin-triplet excited state couples to the mechanical

motion, indicating mechanical coupling to both the valley degree of freedom and the exchange

interaction, in contrast to standard models.
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Carbon nanotubes are found to be an ideal playground for nano-electromechanical systems (NEMS)

since their high-quality, quantum-confined electronic states are accessible by transport spectro-

scopic techniques and couple strongly to the excitations of different mechanical modes. The grow-

ing interest in NEMS is fueled by the desire to accurately sense small masses and forces,1 ad-

dress quantum-limited mechanical motion,2 and integrate such functionality into complex hybrid

devices,3 leading to new applications.4 The central question is the strength of the coupling of elec-

tronic states to the vibrational modes. Whereas molecular junctions display such modes also in

electrically gated transport measurements,5–7 carbon-nanotube (CNT) quantum dots allow for a

much more viable fabrication, higher mechanical Q-factors, and better tuneability as NEMS.8–13

Also, the coupling to the bending mode can be combined14,15 with the spin-orbit (SO) interac-

tion16,17 by making use of the recently demonstrated11 curvature-induced SO-coupling in CNTs.18

Whereas the frequency of the vibrational modes has been demonstrated to be tuneable,19–21 an-

other desirable feature is the ability to switch “on” and “off” the electron-vibration coupling in the

same device, e.g., in envisioned quantum-information processing schemes.15,22 This is also helpful

for fundamental studies of systems in which mechanical motion is combined with other degrees of

freedom, e.g, the spin23 and the valley.24

Recently, switchable coupling to a classical flexural mode of a CNT has been demonstrated.12

In this letter, we present a CNT quantum dot NEMS with a coupling of the electronic states to a

longitudinal stretching vibration of about 200 GHz that can be turned “on” and “off”. We illustrate

the advantage of this by transport measurements in the two-electron quantum-dot regime and find

that the well-known Anderson-Holstein scenario breaks down in an unexpected way: Different

spin states exhibit different coupling strengths to the vibrational mode.

In Figure 1a we show a schematic of a typical suspended CNT quantum-dot device whose

scanning electron microscope image is shown in Figure 1b. The CNT is electrically and mechan-

ically connected to both source (s) and drain (d) contacts where the central electrode acts as a

suspended, doubly clamped top gate (tg). The quantum dot is formed in the small band gap CNT

by the electrostatic potentials of the top and back gate (bg), see Figures 1a and 2a, allowing for
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Figure 1: Carbon-nanotube quantum dot characterization. (a) Schematic illustration of the cross-
section of a partly suspended CNT connected to source and drain electrodes (5nm Cr, 50 nm
Au). While the back-gate shifts the entire potential of the whole structure, the top-gate bridge
overlaps with a 200 nm part of the CNT by an oxidized Cr layer, see Supporting Information.
(b) Scanning electron-microscopy image of a partly suspended CNT sample. The CNT is just
visible and indicated by red arrows. (c) Source-drain current through the quantum dot at zero
magnetic field as function of the bias (Vsd) and top-gate voltage (Vtg), adjusting the back-gate
voltage Vbg simultaneously to keep the average chemical potential in the leads constant: Vbg =
4.35 V− 0.7×Vtg. (d) dI/dVsd at zero magnetic field centered around the 1↔ 2 single-electron
tunneling regime for back-gate voltage Vbg = 4.25 V in the hole regime. We count the number of
electrons relative to the last filled conduction band shell of the CNT as usual. The diagonal dashed
lines marked A-F correspond to transitions between the N = 1 and 2 electron quantum-dot states.
(e) Energy diagram of the one- and two-electron quantum dot states involving the first orbital shell
and the corresponding orbital fillings discussed in the text. These states are responsible for the
transitions A (D− ↔ S−), B (D− ↔ T0) and C (D− ↔ S0) which are the most relevant ones for
the present discussion, see also Supporting Information. For panel (d) we extract ∆ = 0.8 meV
and J = 1.2 meV. (f) Measured magnetic field dependence of the electronic excitation lines along
the horizontal line in panel (d) at Vsd = 6 mV. This way of plotting (see Supporting Information)
focuses the attention on the important triplet states by making the transition B into the lowest triplet
appear as a vertical line.
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electrostatic control of the size of the quantum dot in the range of 250 - 350 nm, see Supporting

Information. By changing the gate voltages we can modify the position and size of the dot with re-

spect to the suspended vibrating region of the CNT, which is a crucial part of our experiment. The

high quality of our CNT sample is revealed by the observation of well-resolved, multiple four-fold

shell-structure of the electronic states in the stability diagram in Figure 1c measured at zero mag-

netic field and at a base temperature of 1.6 K. This shell-structure stems from the combined spin

and valley degeneracies in clean CNTs,25–27 and enables a first characterization of the electronic

properties by the Coulomb and confinement energies. Importantly, the resulting estimates show

that the quantum dot formed in the CNT is comparable to or even larger in size than the top-gate,

see Supporting Information.

The key advantage of our device, in contrast to previous ones, is that we can first obtain de-

tailed information about the electronic spectrum by measuring the differential conductance in a

gate voltage regime without signatures of vibrational excitations. For example, in the spectrum

shown in Figure 1d the low-energy excitations indicated by dashed black lines can be assigned to

transitions between states with electron number N = 1 and 2, respectively. These are indicated

in the schematic in Figure 1e which shows for N = 1 two spin doublets denoted D− and D+, ob-

tained by filling the (anti)bonding orbitals |±〉 = (|K〉± |K′〉)/
√

2 of the K and K′ valleys with

one electron, which are split in energy by 2∆ due to the valley-mixing ∆. For N = 2 we have

spin-singlets S− and S+ (latter not shown) completely filling one of these orbitals, and a singlet S0

and a triplet T0 in which two different orbitals are filled. Here the labels of the many-body states

S, D, T indicate the spin multiplicities (singlet, doublet, triplet), whereas the subscripts indicate

the relevant orbital polarizations. In the transport data of Figure 1d we identify a ground singlet

(S−), an excited triplet (T0) and another singlet (S0), split by the exchange energy J. The measured

magnetic field transport spectroscopy in Figure 1f confirms this assignment: the slope of the lines

A and C for transitions to S− and S0, respectively, differs by the Zeeman spin splitting from the

slope of line B for the transition to the triplet T0. We note that for these parameters the singlet S+

is the highest in energy in Figure 1e. It is not shown there nor discussed further below because this
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Figure 2: Switching the coupling to the vibration “on” and“off”. (a) Schematic illustration of the
quantum-dot tuning into a region with a longitudinal stretching mode (LSM). (b) Top- and back-
gate voltage stability diagram recorded for Vsd = 1 mV. The lines marked (1) [Vbg = 4.41 V−0.5×
Vtg] and (2) [Vbg = 4.35 V−1.0×Vtg] indicate different regimes of electron-vibration coupling. (c)
dI/dVsd measured along line (1) in panel (b) showing no effects of vibrations. (d) Measurement
of dI/dVsd along line (2) in panel (b), where significant electron-vibration coupling is observed:
the arrows indicate the vibrational sidebands introduced. Electronic lines A and B from panel (c)
can still be identified, but C is commensurate with a vibrational sideband of B. [Note that the
same happens in the calculations in panel (g).] The blue markers indicate the end-points of the
line (not shown for clarity) along which the measurements in Figure 3 are taken. (e) Similar
measurement as in panel (d) but for a different relation of gate voltages (Vtg = 4.45 V−0.95×Vbg)
showing vibrational excitations (arrows) with different gate-voltage slope, both in magnitude and
sign. (f),(g) Calculated dI/dVsd corresponding to panel (c) and (d), respectively, see text. The
overall conductance magnitude is adjusted through the coupling Γ, taking T = 0.7 K. (h) Linear
fit of the vibrational excitations: the upper panel fits data from Figure 2d and the lower panel from
Figure 2e, both confirming a harmonic spectrum with ∆Evib = h̄ω = 0.8±0.1 meV corresponding
to 193±24 GHz.
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state does not influence the measured transport in the considered regime.28 Our calculations below

do, however, include the state S+ and confirm that it has negligible influence.

By independently tuning the top- and back gate voltages we can change the electrostatic con-

finement of the quantum dot and thereby effectively operate a single quantum dot system which

can be made sensitive to the vibrating part of the CNT, as illustrated in Figure 2a. The result-

ing electronic stability diagram in Figure 2b, showing nearly parallel lines, indicates that we can

independently fix the electron number in the dot while modifying its shape, dimensions and posi-

tion. When measuring the Coulomb diamonds along the lines indicated in Figure 2b one expects,

electronically speaking, no qualitative difference. Indeed, along the initial working line marked

as (1) in Figure 2b, the measurement in Figure 2c shows no indications of vibrations. However,

when tuning to the working line (2), the excitation spectrum, shown in Figure 2d, changes in a

way that cannot be explained by a modification of the size-quantization energy on the quantum

dot: for several subsequent charge states a dense spectrum of discrete excitation peaks appears,

equally spaced by h̄ω = 0.8±0.1 meV as Figure 2h shows. This is the case across the entire elec-

tronic shell that we measure, see Supporting Information. The spacing lies in the range expected

for the high frequency of the longitudinal stretching mode (LSM) of the suspended parts of the

CNT (length≈ 65 nm as in previous studies8,10). Furthermore, the predominance of the excitation

lines with negative slope indicates that the quantum dot couples to only one of the two suspended

parts.29,30 In Figure 2e we demonstrate that by tuning to a different voltage regime we are able

to make the other vibrating part dominate. Our system thus displays electrostatically tuneable

electron-vibration coupling.

To illustrate how the switchable coupling to a quantized vibration can be exploited, we now

focus on measurements for the N = 1↔ 2 electron regime in Figures 2c - 2d. The corresponding

calculations shown in Figures 2f - 2g are based on a quantum-dot model including the electronic

states identified before in Figures 1d - 1e and coupling to a single vibrational mode. This model

will be discussed in detail below, once we have presented all experimental data. Apart from this,

the non-equilibrium transport is obtained from standard master equations (see Supporting Informa-
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tion) which incorporate single-electron tunneling into both orbitals of the shell (with asymmetry

parameter κ) from both electrodes (with junction asymmetry parameter γ). The electronic and

vibrational states are assumed to relax with a phenomenological rate which exceeds the tunneling

relaxation rates, taken for simplicity to be proportional to the energy change E in the transition:

Γrel(E) = Γ× (E/0.2 meV). The overall tunneling rate Γ merely sets the scale of the current and

is irrelevant to the relative magnitude of the different excitations which is of interest here.

To experimentally identify the electronic states to which the vibrational excitations belong, we

have investigated how the differential conductance measured along the line (not shown) connecting

the blue markers in Figure 2d evolves with a magnetic field B applied perpendicular to the CNT.

The dominating features in Figure 3a are the vibrational sidebands of the lowest of the triplet

excitations T0 which in this presentation of the data appear as vertical lines. Strikingly, the ground

state singlet S− evolving with a slope has no vibrational sidebands as demonstrated by fits of

the difference of the peak position in Figure 3b. This can not be explained by an Anderson-

Holstein model where all electronic states with the same charge couple equally to the vibration,

see Supporting Information for explicit attempts.

Instead, in our modeling we must account for state-dependent Franck-Condon shifts resulting

in the vibrational potentials plotted in Figure 4. To arrive at this, we start from a model accounting

for the observed set of accessible28 many-body transport states, which is restricted by Coulomb

blockade and bias voltage of a few mV to those shown in Figure 1e with electron numbers N = 1

and N = 2 and a single electronic K-K′ shell:

Hel = εN +∆ ∑
τ=±

τ ∑
σ

d†
τσ dτσ − J S+ ·S−. (1)

Here ε is mean level position controlled by Vtg, ∆ is the subband or valley-mixing term and J

is the exchange coupling between the spins in the two orbitals τ = ± with spin-operators Sτ =

1
2 ∑σ ,σ ′ d

†
τσ σσσσ ,σ ′dτσ ′ [σ ,σ ′ are spin indices, σσσ is the usual vector of Pauli-matrices, and d†

τσ cre-

ates a spin-σ electron in orbital τ]. To obtain a result as plotted in Figures 2f - 2g we first introduced

8



a Holstein coupling by allowing the level position ε to depend on Q, the dimensionless vibration

coordinate normalized to the zero-point motion: we thus formally replace ε → ε +
√

2h̄ωλεQ.

This results in the commonly assumed uniform vibration coupling with strength λε to all elec-

tronic states with the same charge N, which is not observed here. The required state dependent

electron-vibration coupling is obtained by additionally accounting for a dependence of the other

parameters on the vibration coordinate, i.e., we formally replace ∆→ ∆+
√

2h̄ωλ∆Q, where λ∆

is a dimensionless one-electron valley-vibration coupling, and J→ J +
√

2h̄ωλJQ, where λJ is a

dimensionless coupling of the vibration to the two-electron exchange. Here many-body physics

comes in: when going from the singlet S− ground state to the triplet T0, the Pauli principle forces

the two electrons into different orbitals which can couple differently to the vibrational mode (dif-

ference quantified by λ∆). However, the coupling λJ is important as well: when allowing only for

λ∆, the effective electronic excitation spectrum for fixed charge N (relative to which the vibration

excitations are “counted”) becomes dependent on the vibrational couplings (polaronic renormal-

ization). That experimentally no significant shift of the electronic excitations is found when turning

“on” the couplings to the vibration requires the couplings λJ and λ∆ to be comparable in magni-

tude but opposite in sign. This results in an enhanced coupling of the triplet T0 over S− while

the polaronic shifts that they induce cancel out, keeping the effective electronic excitations fixed.

This thus leaves one free parameter, their magnitude, which controls the degree of state-specific

coupling, which we adjust to the experiment. Together this suffices to obtain results such as Fig-

ures 2f - 2g that reproduce the main zero-field observations of Figures 2c - 2d. When the vibration

couplings are “off’ in Figure 2f we estimate from Figure 2c the parameter values ∆ = 0.8 meV,

J = 1.5 meV, (similar to those in Figure 1d) and use γ = 0.0, κ = −0.3. When the vibration

couplings are “on” in Figure 2g we use the same values for J and ∆ but nonzero vibration cou-

plings λε = 0.28, λ∆ = 0.32, λJ = −0.22 and frequency h̄ω = 0.85 meV and we adjusted the

asymmetries γ =−0.5, κ = 0.3. Despite the fact that there are several parameters, the experiment

imposes strong restrictions, in particular, regarding the choice of vibrational couplings, excluding

a simple Holstein mechanism (λ∆ = λJ = 0), see Supporting Information. We arrive at the three

9



electron-vibration couplings by imposing three experimental constraints after expressing the effec-

tive couplings of the electronic states in terms of λε , λ∆, and λJ: (i) the observed T0-S− splitting

and (ii) S0 - T0 splitting (commensurate with 2h̄ω) should match energy expressions that depend

on the vibrational couplings (polaron shift) and (iii) the vibrational-coupling of T0 is adjusted to

numerically reproduce the observed number of triplet vibrational sidebands. We note that in Fig-

ures 2d - 2e, the higher vibrational sidebands become more intense at high bias. As expected, this

is not captured by our model since this may involve excitations beyond the lowest two electronic

orbitals and energy-dependence of the tunnel barrier, neither of which we include here. We have

focused instead on the nontrivial interplay of vibrational and spin-excitations for N = 1 and N = 2

in the lowest sidebands.

The resulting physical mechanism is illustrated in Figure 4: when starting out from state D−

and adding a second electron to the lowest orbital the lowest singlet state S− experiences only

a small horizontal shift of the vibrational potential minimum (both electrons in orbital |−〉 have

their coupling weakened by λ∆ and there is no spin and therefore no exchange modification of the

coupling by λJ). However, when adding the electron to the excited orbital, the coupling is not

only enhanced by λ∆, but also by a negative λJ when a spinfull triplet T0 is formed. This results

in a large Franck-Condon shift of the potential minimum of T0 in Figure 4. The above horizontal

shifts of the potential minima translate into suppressed vibrational sidebands for the singlet S−

and a pronounced series of sidebands for the triplet T0, respectively (Franck-Condon effect). The

presence of the further electronic states and their quantized vibrational states in Figure 4, all of

which are included in our transport calculations, do not alter the above simple picture: Whereas

the excited singlet S+ does not couple to transport,28 the role of S0 cannot be ascertained at zero

magnetic field because it is commensurate (within the line broadening) with one of the vibrational

sidebands of T0.

The field evolution in Figure 3c, calculated by adding a Zeeman term to equation (??), repro-

duces the main observation of Figure 3a, namely, that the triplet maintains its vibrational sidebands

(vertical) but the ground singlet S− (sloped) does not. However, to obtain this agreement with the

10
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CNT quantum dot included in the transport calculations using the same parameters as in Figures 2f
- 2g and 3c. The excited triplet T0 and ground singlet S− have significantly different couplings
to the vibration, i.e., shifts of their potential minima relative to that of the one-electron ground
state D− strongly differ. Due to the weak SO coupling several avoided crossings can be seen. The
most important anticrossing is that of the T0 (blue) and S− (red) potential energy surfaces. This
can be understood directly from the SO operator as written in the text: it "flips" both the orbital
(τ) and spin index (σ ) of an electron. In Figure 1e this implies that for N = 2 the red spin up
in the higher orbital is flipped into the blue spin down in the lower orbital (this represents a flip
from T0 to S−). The resulting admixture of T0-components (blue) to S− (red) causes the latter to
remain visible in the transport in Figure 3c with increasing the magnetic field when the tunneling
becomes spin-selective due to the CNT leads. The remaining SO anticrossings are discussed in the
Supporting Information, which for our parameters have negligible impact on transport.
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measurements we are forced to further extend the above model. First, both the excited singlet

(S0) as well as the Zeeman split-off states of the triplet (T0) do not appear in the measurements.

This we attribute to the fact that the source and drain leads of the quantum dot are not formed

by metallic contacts but by small pieces of suspended CNT. Zeeman splitting of discrete states in

these CNT contacts may lead to spin-filtering which turns on with the magnetic field, developing

full strength at a few Tesla where gµBB≈ kBT . We phenomenologically account for this by a spin-

dependence in tunneling to / from the electrodes which depends on B: ζ (B) = tanh(gµBB/2kBT ).

Second, when only including this spin-filtering in the model, it suppresses the singlet groundstate

S− (without vibrational bands) which we do experimentally observe as excitation A in Figures 3a

- 3b. However, when even a small spin-orbit (SO) coupling is included, the singlet S− reappears

(borrowing intensity from the triplet T0, cf. also Figure 4), but, importantly, without reinstating the

unobserved S0 and the Zeeman split-off states of T0 and their vibrational sidebands. This produces

the observed intensity pattern, which is impossible to achieve with simple commonly used models,

see Supporting Information. Here, the spin-orbit coupling is included by adding to equation (??)

a term HSO = ∆SO ∑σ ,τ d†
τσ d−τ−σ with ∆SO = 0.1 meV which allows both the spin σ and orbital

index τ to be flipped in the schematic Figure 1d, thereby coupling in particular T0 to S−, lending it

intensity. Figures 2f - 2g and 3c are based on the inclusion of all these effects. However, we empha-

size, that in the latter figure spin-filtering and spin-orbit coupling are needed exclusively to explain

the missing Zeeman lines, but do not lead to a qualitative change of the state-dependent coupling at

B = 0 in Figure 2g, which is our main finding. The Supporting Information explores the influence

of the various parameters, confirming the necessity of including them. The key advantage of our

tuneable setup is that we are able to first identify excitation A and B as relating to electronic sin-

glet S− and triplet T0, respectively, and subsequently allowing us to study the vibrational sidebands

C-E.

In conclusion, we have demonstrated switchable coupling of a quantized vibration of a carbon

nanotube to its quantized electronic states. Using this advance we explored the two-electron regime

– including the magnetic field dependence – and found indications of state-dependent vibrational

12



transport sidebands not described by standard models. We showed that the interplay of intrinsic

effects on the carbon nanotube (Coulomb blockade, valley-index, spin-exchange) and experimen-

tal details (junction, orbital, and spin asymmetries) can explain the observations. This, however,

includes vibrational couplings that involve internal spin- and valley-degrees of freedom, bringing

spin- and valley-tronics physics within range of NEMS.
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In this Supplementary Information we provide a detailed description of the experimental meth-
ods and additional measurements (Sec. I) and a precise formulation of the model and calculations
reported in the main text (Sec. II). In both sections, we provide an extensive discussion of claims
and results of the main article. Within the Supporting Information references are numbered as,
e.g., equation (S-1) and Figure S-1, whereas regular numbers, e.g., equation (1) and Figure 1, refer
to the main article.
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FIG. S-1. Fabrication work flow described in the text.

I. EXPERIMENTAL METHODS

A. Fabrication

Devices were fabricated in a similar fashion as in Ref. [1] as outlined in Fig. S-1. The starting
point is a highly doped silicon wafer covered by 290 nm silicon oxide (step a). Next, following the
recipe described in Ref. [2] ferritin catalyst nanoparticles are dispersed on the substrate (step b)
from which carbon nanotubes are grown by means of chemical vapor deposition (step c). For the
subsequent selection and localization of carbon nanotubes marker structures are evaporated in an
electron beam (e-beam) lithography step (step d,e). In a second e-beam lithography step metallic
electrodes and gate structures are deposited in a single evaporation (5nm Cr, 50nm Au) on selected
carbon nanotubes (step f-h). Finally, diluted hydrofluoric acid (1% for 6min) is used to etch the
silicon oxide followed by critical point drying (step i). It is crucial that the central electrode is
completely underetched so that the chromium layer oxidizes when exposed to environmental air
to form the top-gate oxide.

B. Configuration of the quantum dot

In Fig. S-2 we show the back-gate voltage (Vbg) characteristics of the investigated carbon nan-
otube (CNT) at two different temperatures. The CNT is slightly p-doped and the charge neutrality
point is found to be around 7 V. At gate voltages close to the charge neutrality point the current
Isd is strongly suppressed, even for elevated temperatures T = 50 K. This is the typical character-
istics of a CNT with a small semiconducting gap separating p- and n-conducting regions. For low
temperatures the current within the semiconducting band gap, apart from a few small resonances,
is pinched off. The band gap extends over a back-gate voltage range of ∆Vbg = 1.5 V. Multiplied
with the absolute lever arm of the back gate αbg = 0.035 the energy splitting between valence
and conduction band is ∆Egap ≈ 50 meV. At T = 1.6 K we observe a number of reproducible
resonances. These resonances are attributed to Coulomb blockade effects. The irregularity of
the resonances indicates the existence of multiple quantum dots and a non-monotonic CNT band
structure along the nanotube axis.

In Fig. S-3a we illustrate the electrostatic formation of the main quantum dot. The Fermi level
along the entire CNT can be tuned with respect to valence and conduction band by an applied
back-gate voltage Vbg. Owing to the geometry of the device (see Figures 1a - 1b of the main text)
different electrostatic potentials act on different parts of the nanotube depending on the proximity
to the local top gate: The electrons just below the top gate experience electrostatic screening
of the back-gate voltage because the CNT is separated only by a few nanometers of oxide from
the top-gate electrode while a combination of top gate and back-gate voltage is acting on the
suspended parts of the CNT. Therefore, we expect a bending of the CNT band structure along its
axis.

A device schematics together with an indication of the location and size of the quantum dot
with respect to the metallic leads and the top gate is given in Fig. S-3b. As deduced below, the
quantum dot is formed close to the top gate and its lateral size is on the order of the top-gate
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FIG. S-2. Source-drain current Isd through the CNT as a function of back gate voltage Vbg at small bias
voltage Vsd = 0.3 mV at two different temperatures.
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FIG. S-3. Formation scenario of the quantum dot. (a) Electrostatic bending of the CNT bands in close
vicinity to the top gate induced by top and back gate voltages. (b) The upper illustration shows a
schematic of the device. The semi-suspended CNT is connected to Cr/Au leads and a central top gate. In
the suspended region longitudinal stretching modes (LSM) of vibration are indicated by the blue spirals
surrounding the CNT, while the red region below the top gate symbolizes the quantum dot. The lower
schematics describes the tunneling through the quantum dot. Electrostatically induced tunnel barriers
separate the CNT quantum dot electrically from the CNT leads.

width of 200 nm. These parameters suggest, that the leads of the QD are not the metallic contacts
but the CNT itself and therefore the size of the QD can be tuned exclusively by the applied gate
voltages.

In order to determine the electronic size of the quantum dot we analyse the addition energies
needed to add the first and the second electron on the investigated electronic shell of the QD,
respectively. The addition energy is defined as the change in electrochemical potential ∆µN when
adding the (N + 1) charge to a quantum dot containing already N charges3,4. It can be related
to the charging energy EC, the quantum energy-level separation β, the valley degeneracy splitting
2∆ and the exchange interaction J via

∆µ0 = EC + β − 2∆ (S-1)

∆µ1 = EC . (S-2)

Additionally, we can infer J and ∆ from the energies of the first two excited states relative to
the two-electron ground state, ET0

−ES− = 2∆− J/4 and ES0
−ES− = 2∆ + 3J/4, respectively

[cf. equation (S-14), (S-45), and (S-46) below)]. From Fig. 2c of the main article [reproduced in
Fig. S-6b below] we extract ∆µ0 = 9.0± 0.3 meV, ∆µ1 = 3.8± 0.4 meV, µ1 = 1.2± 0.3 meV and
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FIG. S-4. (a) Charge stability map in the Vtg-Vbg-plane. The differential conductance is plotted for
zero d.c. bias voltage Vsd applied between source and drain. Resonances with a slope marked by the
blue dashed lines are attributed to resonances off the central quantum dot. The Coulomb diamonds in
Fig. 1c of the main article are measured along the white continuous line and the Coulomb peaks in (b)
are measured along the white dashed line (Vbg = 4.26 V − 0.6× Vtg).

µ2 = 2.7± 0.3 meV. This yields

β = 6.8 meV, J = 1.5 meV and ∆ = 0.8 meV. (S-3)

Due to large level spacing β relative to J and ∆, the analysis of the transport spectrum involving
the first few vibrational excitations – at the focus of the main article – only requires considering
electron fillings of the first orbital shell (i.e., of the orbitals labeled τ = ± in the main article). A
more detailed fitting of the energy positions consistent with the above and including the vibrations
is given in Sec. II C 1. The expression for the quantization-induced level spacing β = hvF/2L, with
vF = 8.1× 105 m/s allows to determine the quantum dot length L = 245± 25 nm, corresponding
approximately to the length below the top gate.

For the determination of the position of the quantum dot we have evaluated the respective lever
arms of both top gate and back-gate electrodes as well as the relative lever arms of the source and
drain leads. The analysis of the slopes of the edges of the Coulomb diamonds in Fig. 1d of the
main article gives the following lever arms: αtg = 0.55± 0.04 and αs − αd = 0.01.

Knowing the lever arm to the top gate, the lever arm to the back gate can be obtained from
the charge-stability map when varying both top gate and back-gate voltages, as shown in Fig. S-4.
This figure consists of lines with different slopes, which is a signature of a multiple quantum dot
structure. The interesting features are the ones with the largest slope, marked by the blue dashed
lines. The slope of these lines allows to extract the relative lever arm between top gate and back
gate αrel = αtg/αbg = 15.5± 1.9, resulting in αbg = 0.035± 0.005.
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FIG. S-5. Charge stability diagram in both gate voltages for finite d.c. bias voltage of Vsd = 1 mV. The
differential conductance plot shows splitting of the lines belonging to the central quantum dot.

The significantly larger lever arm to the top gate and the almost negligible difference between
the lever arms of source and drain confirm our assumption that the quantum dot is located in
the middle of the nanotube in close vicinity of the top gate and is as a result strongly screened
from the back gate. Additional lines with smaller slope in the charge-stability diagram indicate
the existence of additional quantum dots further away from the top gate.

In Fig. S-4a we show a charge stability map as a function of both the top gate and the back-gate
voltage. Strikingly, the Coulomb-peak excitation lines with the steepest slope, which correspond
to the central QD, appear in groups of four, reflecting the twofold orbital-degenerate bandstructure
of high-quality CNTs. Further confirmation of the fourfold periodicity is provided in Fig. S-4b
where we plot a Coulomb-peak measurement as function of Vtg. These characteristics justify the
treatment of the CNT QD as an effective few-electron system.

The CNT-QD is thus connected to the metallic electrodes by short CNT leads. To prove that
the CNT-leads do not electrically influence our measurements on the central QD significantly, we
have measured the same diagram as in Fig. S-4a, but with a finite bias voltage VSD = 1 mV.
Fig. S-5 shows that only the lines corresponding to the central QD split up into two lines, while
the lines corresponding to the lateral parts are not affected. This broadening into ground and
excited states proves that the voltage drop occurs only at the tunnel barriers (marked in Fig. S-
3b) between the CNT-QD and the CNT leads. The tunneling rates are estimated to be on the
order of Γ = 2π×10 GHz, which corresponds to roughly 300-400 mK, well below the experimental
temperature T = 1.6 K. As a first approximation it thus makes sense to apply a standard master-
equation description of single-electron tunneling transport, see Sec. II.

C. Electrostatic control of the coupling to vibrational modes

In this section we provide further experimental data on the tuning of the coupling of the QD to
vibrational modes. In particular, in Fig. S-6 we provide an additional QD excitation spectrum to
further illustrate our ability to continuously tune the electron-vibration coupling. Figures S-6a,
S-6b and S-6d correspond to Figures 2b, 2c and 2d of the main article and show a pure electronic
excitation spectrum and a vibrational excitation spectrum, respectively. In addition, we show in
Fig. S-6c data for an intermediate state of the QD.

In order to understand the switchable coupling of the QD to vibrational modes we compare the
quantum dot size in the two extreme regimes. Unfortunately, when the vibrations are switched on
we can not assign the energy of the second excited state S0 in the two electron regime (because
it is degenerate with a vibrational sideband within the experimental line width). Nevertheless,
we can give bounds for the dot size. With ∆µ0 = 9.3 meV, ∆µ1 = 5.8 meV and µ1 = 0.9 meV
(see Fig. S-6d and also Fig. S-9b) we get β = 4.4 meV + J/4, which gives a larger quantum dot
size in the vibrational regime for 0 < J < 9.6 meV. For realistic exchange energies this inequality
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dot measured along the respective lines in panel (a).

is fullfilled. If we choose, for example, J = 1.5 meV as in the regime without vibrations the
quantum dot length exceeds 300 nm. The larger quantum dot size, when vibrations are switched
on, indicates that the overlap between QD and suspended regions of the CNT is increased. This,
in turn, results in coupling to vibrational modes.

D. Temperature dependence of vibrational sidebands

We also investigated temperature dependence of ground and excited states in the temperature
regime where Coulomb blockade peaks still could be resolved along the lines of Ref. [1]. In Fig. S-
7a we show Coulomb diamonds measured in the very same region of gate voltage (same electronic
state) for different temperatures, 1.6 K, 2.5 K, 3.5 K and 5 K. As the temperature increases,
the conductance peaks related to ground and excited states wash out, i.e., they broaden and
the conductance maximum decreases. In Fig. S-7b we show the temperature dependence of the
maximum conductance Gmax for the electronic triplet excited state T0 (blue circles) and its first
vibrational replica, i.e. the emission side-band (red triangles). In the four panels in Fig. S-7a
these excitations are marked by blue and red arrows, respectively. For the tunneling through the
electronic triplet T0 excited state and its vibrational emission peak, we observe a Gmax ∼ 1/kBT
dependence (blue and red curves) that one expects for the derivative of the Fermi distribution in
the quantum Coulomb blockade regime3.

Unlike in Figs. 2c-2d in Ref. [1] we do not observe any extra vibrational-absorption conductance
peaks appearing with increasing temperature inside the Coulomb blockaded region, most likely
because of weaker electron-vibron coupling strength / smaller tunneling rates. This prohibits
further investigation of the temperature dependence.
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FIG. S-7. (a) Coulomb diamond charge stability diagrams in the Vsd-Vtg-plane around the N = 1-2
transition for T = 1.6 K, as shown in Fig. 2d of the main article, and for three higher temperatures T =
2.5 K, 3.5 K and 5 K. (b) Conductance peak value as function of temperature for electronic triplet state
(blue circles) and the first vibrational replica (red triangles). The blue and red curves are guides to the
eye ∝ 1/kBT .

E. Measurements in a magnetic field

The motivation for plotting the data as done in Fig. 3a in the main article is explained in
Sec. II C 2.

II. THEORETICAL MODELING

In this section we describe in detail the employed model, the method used for calculating
the differential conductance of the CNT quantum dot, and the resulting understanding of the
transport measurements. The full Hamiltonian of the system under consideration reads as H =
Hqd + Htun + Hres, where Hqd describes the quantum dot states, including both their electronic
and vibrational degrees of freedom, and Htun is the tunnel coupling Hamiltonian between the dot
and the reservoirs described by Hres.

A. Model and eigenstates

1. Electronic model

a. Carbon-nanotube quantum dot We first set up an electronic model that accounts for the
many-electron states observed in the experiment when the coupling to the CNT vibrations is
switched “off”. In Sec. II A 2 we then include the vibrations and their coupling to obtain our full
CNT quantum-dot Hamiltonian Hqd. As mentioned at the end of Sec. I B we can restrict our
attention to a single orbital shell. We account for a significant valley-mixing ∆ > 0:

∆
∑

σ

(d†KσdK′σ + H.c.) , (S-4)

where d†Kσ (dK′σ) is a creation (annihilation) operator for an electron in valley K (K ′) with spin
σ = {↑, ↓} = {1,−1} whose quantization axis is chosen along the direction of the applied magnetic
field. Due to the large splitting ∆, it is reasonable to use a basis of bonding (τ = −1) and
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antibonding (τ = +1) combinations (BA) of the K and K ′ valleys, i.e. d
(†)
τσ = (d

(†)
Kσ + τd

(†)
K′σ)/

√
2.

In this basis, the electronic model Hamiltonian can be written as

Hel = εN − gµBBSz + ∆
∑

τ

τNτ − JS+ · S− +
EC
2
N(N − 1). (S-5)

In the first term, ε = −αtgVtg is the quantum-dot energy level, electrostatically controlled by the
top-gate, and N =

∑
τσ d

†
τσdτσ is the occupation number operator in the dot. Note that in the

experiment back- and top-gate are tuned simultaneously in a linearly dependent way and that
Vtg is taken as the independent parameter. Here N = 1 − 4 counts the electrons that fill up the
orbital shell that we consider and N = 0 corresponds to the ‘empty dot’ state |0〉 in which all lower
shells are filled. The further number operators Nτ =

∑
σ d
†
τσdτσ and Nσ =

∑
τ d
†
τσdτσ count the

number of electrons in orbital τ and with spin σ, respectively. The second term in equation (S-5)
describes the spin Zeeman splitting due to magnetic field B applied perpendicular to the CNT axis
and Sz =

∑
σ(σ/2)Nσ is the operator of the spin component along the field B. The third term in

the electronic Hamiltonian (S-5) is a spin-exchange term with energy J . The spin operator Sτ for
electrons in orbital τ = ± in the BA-basis is Sτ =

∑
σσ′ σσσ′d

†
τσdτσ′/2, where σ is the vector of

Pauli matrices. Finally, the last term is the charging energy EC accounting for Coulomb repulsion.
The inter- and intra-valley electronic repulsion energies are assumed to be the same as is typically
observed in CNTs quantum-dot samples5. Since we will restrict ourselves to the analysis of the
1↔ 2 charge regions, both the charging energy EC and the level energy β [cf. equation (S-1)] can
be absorbed by a redefinition of the origin of top-gate voltage and therefore these do not need to
be included henceforth. Thus setting EC = 0 we obtain the Hamiltonian (1) of the main article,
where we note that for brevity the Zeeman term was not written but only mentioned in the main
article.

A convenient many-particle basis for N = 1 and N = 2 charge sectors is constructed by creating
spin-multiplets using these orbitals. In the following we will denote by |x, y〉 such electron fillings,
where the first (second) slot x (y) corresponds to the ground orbital − (excited orbital +). By
filling the empty dot state |0〉 with one electron, we obtain two spin-doublets denoted by D± in
the main article, with states

|Dσ
−〉 = d†−σ|0〉 = |σ, •〉 , (S-6)

|Dσ
+〉 = d†+σ|0〉 = |•, σ〉 . (S-7)

where • denotes an empty ± orbital, respectively. The next step is to add a further electron to
these states. We therefore obtain two ‘localized’ singlet-fillings of the same orbital

|S−〉 = d†−↓d
†
−↑|0〉 = | ↓↑, •〉 , (S-8)

|S+〉 = d†+↓d
†
+↑|0〉 = |•, ↓↑〉 . (S-9)

By filling the empty dot with two electrons in different orbitals and diagonalizing the electronic
Hamiltonian of equation (S-5), we obtain a ‘delocalized’ singlet

|S0〉 =
d†+↓d

†
−↑ − d

†
+↑d
†
−↓√

2
|0〉 =

| ↑, ↓〉 − | ↓, ↑〉√
2

, (S-10)

and a triplet T0 of states |Tm0 〉 with spin-projections m = 0,±1:

|T 0
0 〉 =

d†+↓d
†
−↑ + d†+↑d

†
−↓√

2
|0〉 =

| ↑, ↓〉+ | ↓, ↑〉√
2

, (S-11)

|T+
0 〉 = d†+↑d

†
−↑|0〉 = | ↑, ↑〉 , (S-12)

|T−0 〉 = d†+↓d
†
−↓|0〉 = | ↓, ↓〉 . (S-13)

The labels of the many-body states S, D, T indicate the spin multiplicities (singlet, doublet,
triplet), whereas the subscripts indicate the relevant orbital polarizations (signature of difference
of number of τ = ± electrons, respectively), which is important here.
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The above defined states are exact many-particle eigenstates of the model (S-5) whose corre-
sponding eigenenergies are

N = 1 : EDστ = τ∆− σgµBB/2 N = 2 :





ES0 = 3J/4
ETm0 = −J/4−mgµBB
ESτ = 2τ∆

(S-14)

For the moment we consider zero magnetic field B = 0 and can simplify the discussion by omitting
the spin projection indices σ in the doublets and m in the triplet. In Sec. II C we will return to
this notation when discussing the effect of a nonzero magnetic field. Clearly, in the N = 1 charge
sector the ground state is the bonding doublet D− while for N = 2 the ground state is given
by the localized singlet S− in the expected regime of weak exchange energy relative to the valley
mixing, J < 8∆.

b. Transport model The source (s) and drain (d) leads are described as macroscopic reservoirs
of noninteracting electrons through the Hamiltonian

Hres =
∑

rkσ

(εrk + µr)c
†
rkσcrkσ, (S-15)

where c†rkσ (crkσ) creates (annihilates) an electron in lead r = {s,d} with spin σ = {↑, ↓} and state
index k. The eigenenergies of the leads are uniformly shifted by the bias voltage Vsd such that
the electro-chemical potentials read µr = ±Vsd/2 for r = {s,d}, respectively. These reservoirs are
assumed to be independently at equilibrium, characterized by a temperature T . We note that the
matter of interactions in the CNT leads is a subtle one, but in the experiment we see no particular
effect indicating their importance. Rather, the fact that we have quantized (yet broadened) states
in the CNT leads seems to be important, resulting in an effective spin-dependence of the tunneling
rates, see below.

The coupling between the dot and the leads is determined by the tunnel Hamiltonian

Htun =
∑

rkτσ

trτσd
†
τσcrkσ + H.c. , (S-16)

with the tunnel amplitudes trτσ assumed to be junction- (r), orbital- (τ) and spin-dependent (σ).

Since the tunnel rates required below have the form 2πρ (trτσ)
2

(by Fermi’s Golden Rule) these
dependencies are modeled using three asymmetry parameters κ, γ and ζ, respectively:

trτσ = 1√
2
(1 + τκ)(1 + σζ)tr , tr =

1 + rγ√
1 + γ2

√
(Γ/2)

2πρ
, (S-17)

where r = ± corresponds to r = s/d. Here tr characterizes the tunneling through each junction r
through the overall rates Γr = 2πρ(tr)2 and ρ is the density of states in the respective electrode.
We let Γ = Γs + Γd characterize the overall scale of the rates which merely sets the magnitude
of the current and is irrelevant to the relative strengths of the different excitations which are of
interest here. The latter are controlled by the quantum dot electron-vibrational states and the
parameters γ, κ, and ζ:

• In equation (S-17) we include the usual junction asymmetry γ = (ts − td)/(ts + td) for the
tunnel coupling to the source and drain leads through the last factor. Keeping Γ = Γs + Γd

fixed, a little algebra shows that tr is given by the second equation in equation (S-17). This
asymmetry is relevant for modeling the measured differential conductance, which manifests
some asymmetry between the intensities of positively and negatively sloped lines. We note
that any r-dependence in the density of states in the leads that we ignored above can be
absorbed into γ.

• The first factor in equation (S-17) captures an orbital asymmetry κ = (tr+σ−tr−σ)/(tr+σ+tr−σ)
which is the same for all σ and r. This derives from the linear combinations of the valley-
dependent tunnel amplitudes, i.e. trKσ = (tr+σ + tr−σ)/

√
2 and trK′σ = (tr+σ − tr−σ)/

√
2. We

notice that for strictly symmetric couplings of the two orbitals, κ = trK′σ/t
r
Kσ = 1, the tunnel

Hamiltonian is symmetric with respect to the interchange of the K and K ′ valleys and cannot



10

induce transitions from the anti-symmetric N = 1 ground state D− into the symmetric state
N = 2 ground state S−. This would cause a strong suppression of low-bias transport up to
a voltage where the lowest excitation for either N = 1 or N = 2 becomes accessible. This is
not observed in the experiment and indicates that a definite orbital asymmetry is present,
i.e., κ 6= ±1. (A similar problem arises for κ = −1.)

• Finally, we introduced in addition a possible spin-dependence in the tunnel amplitudes
through the parameter ζ = (trτ↑ − trτ↓)/(trτ↑ + trτ↓) which is the same for all τ and r. Below

we turn on ζ only in a nonzero applied magnetic field B [cf. equation (S-59)]. As mentioned
in the main article, this models a relevant aspect of the experiment, related to the fact that
we have CNT leads, which we will discuss in Sec. II C when calculating the magnetic field
evolution of the vibrational sideband lines observed in Fig. 3a of the main article.

From the above Hamiltonian we calculate the tunnel matrix elements (TMEs)

T rσηa←b =
∑

τ

trτσ〈a|dητσ|b〉 , (S-18)

with the shorthand dητσ = d†τσ, dτσ for η = ±1. In Sec. II B we derive the explicit TMEs for the
considered model after having considered the effect of the vibration, to which we turn now.

2. Coupling to the vibration - beyond the Anderson-Holstein model

The electronic model accounting for the many-electron states observed in the experiment is now
extended to deal with the case where the coupling to the vibrational stretching mode of the nan-
otube is switched “on”. As discussed in the main article, the differential conductance of Fig. 2d
together with its magnetic field evolution in Fig. 3a shows several vibrational sidebands associated
to the triplet state, but none for the ground singlet. This strong state-dependence in the coupling
to the vibrational mode forces us to consider three different types of electron-vibration couplings
which arise from the assumption of a linear dependence on the (dimensionless) mechanical dis-
placement Q of the nanotube in the electronic parameters R = {ε,∆, J} of equation (S-5). In all

cases, we assume R(Q) = R+λR~ω
√

2Q. We therefore have, in addition to the standard Holstein
coupling λε to the number of particles N , a coupling λ∆ which depends on the valley-mixing and
a vibration-exchange coupling λJ . By plugging these into equation (S-5) we arrive to the full
Hamiltonian of the CNT quantum dot

Hqd = Hel +
~ω
2

[
P 2 + (Q+

√
2Λ)2

]
− ~ωΛ2 , (S-19)

which can be seen as a shifted quantum harmonic oscillator. The above electron-vibration cou-
plings enter through the following operator

Λ = λεN + λ∆

∑

τσ

τNτ − λJS+ · S− , (S-20)

which shifts the harmonic potentials associated to each electronic state (horizontal shift) and it
also introduces a polaronic shift in the energy (vertical shift).

a. Adiabatic potentials To aid the intuition we consider the adiabatic potentials for this prob-
lem, obtained by treatingQ as a classical variable. These potentials were plotted in the main article
in Fig. 4. The adiabatic potentials associated to the electronic states |e〉, where e = D±, S±, S0, T0,
can be characterized by polaron shift of its potential minimum Λe = 〈e|Λ|e〉, i.e.

ΛDτ = λε + τλ∆ , ΛSτ = 2λε + 2τλ∆ , (S-21)

ΛS0 = 2λε +
3

4
λJ , ΛT0 = 2λε −

1

4
λJ . (S-22)

Roughly speaking, the magnitude of these shifts determine whether none, several or many vi-
brational sidebands will appear (see below). These expressions reveal that the polaronic shifts
corresponding to the various electronic states can indeed be different once one abandons the
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simplifying assumption of the Anderson-Holstein model, that the electronic excitations are not
affected by a distortion (the vibration coordinate Q):
(i) Both the valley-vibration coupling λ∆ and the exchange-vibration coupling λJ distinguish mul-
tiplets with zero (S0,T0) and maximal orbital polarization (Dτ ,Sτ ).
(ii) Also, the exchange-vibration coupling allows for a fine tuning of the coupling to the vibration
for the S0 and T0 states. As we will show in Sec. II C, the horizontal shifts of the ground singlet
S− and the triplet T0 can be tuned so they are qualitatively different, giving rise to contrasting
Franck-Condon factors.

Although the intuition is useful, in our calculations we account for the exact many-body eigen-
states of the quantum-dot Hamiltonian in equation (S-19). These are obtained as a tensor product
of the electronic states |e〉 and the quantum vibrational states |ν〉. These electron-vibration eigen-
states |e, ν〉 thus yield the following eigenenergies for e = D±, S±, S0, T0:

Ee,ν = 〈e, ν|Hqd|e, ν〉= Ee − ~ωΛ2
e +

~ω
2

(
ν +

1

2

)
. (S-23)

The horizontal shift in equation (S-19), although not present in the above energies, enters as the
equilibrium position for the vibrational states, and thereby it plays a crucial role in the transition
amplitudes when calculating the matrix elements of the tunnel Hamiltonian, as we will show in
Sec. II B.

Finally, we note that in the limit λ∆ = λJ = 0 the model reduces the standard Anderson-
Holstein model. Here, the polaronic energy shifts can be absorbed into the gate voltage since the
electron-vibration coupling for transitions involving states differing by one electron is, in all cases,
the same.

b. State-dependent Franck-Condon shifts - the role of λ∆ and λJ The tunnel amplitudes and
thus the intensities of the lines in the differential conductance depend on the Franck-Condon
amplitudes that can be calculated from the relative shifts between the harmonic potentials, i.e.
Λx,y = Λx − Λy where x, y are labels of the many-particle states differing by one electron. Of
particular relevance to the experiment are the two relative oscillator shifts

ΛS−,D− = λε − λ∆ , (S-24)

ΛT0,D− = λε + λ∆ −
1

4
λJ , (S-25)

for transitions from the ground doublet D− to the ground singlet S− and to the triplet T0,
respectively. Since λ∆ is present in both transitions but with different sign, it can induce different
coupling strengths for the singlet and the triplet. Additionally, λJ can be used to tune the coupling
strength of the triplet independently of the singlet. According to equations (S-57)-(S-23), the
couplings λ∆ and λJ also induce vertical polaronic shifts (i.e., of the energy at the minimum)
which are given by

Λ2
S− = 4(λε − λ∆)2 , (S-26)

Λ2
T0

= (2λε − 1
4λJ)2 . (S-27)

Here it is important to note that the triplet polaronic shift does not depend on λ∆, and in
consequence its coupling to the vibration can be modified through λ∆ in equation (S-25), whereas
the polaronic shift in equation (S-27) remains unaffected. The coupling λJ can therefore be used
to tune the polaronic shift to the triplet without affecting the singlet S− state. It is thus indeed
possible with our model to describe the central observation in the experiment.

3. Spin-orbit interaction effects

In this section we consider the possible effects on the electronic properties of the many-body
states of the CNT quantum dot due to a static curvature-enhanced spin-orbit (SO) coupling ∆SO.
There are two reasons for this: First, one may wonder how the above scenario is affected by ∆SO in
general. Second, even when ∆SO is too small as to produce a significant shift in the line positions
of the differential conductance, the SO mixing turns out to be crucial to give a nonvanishing
amplitude to the ground singlet line in Fig. 3c.
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When considering the nanotube axis oriented along the x-direction as we do here, this SO
interaction enters through the following Hamiltonian6

HSO = ∆SOσx ⊗ τz , (S-28)

where σx and τz are Pauli matrices in spin and valley subspaces, respectively. Hence, the spin-
orbit interaction conserves the valley structure, but it couples different spins, yielding spin-flip
processes. Written in the BA-basis,

HSO = ∆SO

∑

τσ

d†τσdτ̄ σ̄ , (S-29)

the spin-orbit term couples the Kramers doublets |D↑−〉 ↔ |D↓+〉 and |D↓−〉 ↔ |D↑+〉. Here we used
the compact notation σ̄ = −σ and τ̄ = −τ .

Naively, one expects that for ∆SO < ~ωΛT0S− the state-dependent vibrational coupling will
survive. To again develop some better intuition we discuss as before the adiabatic approximation
where the mechanical displacement Q is considered as classical parameter. In the full numerical
calculations, however, we always exactly diagonalize the quantum-dot Hamiltonian model.

a. One-electron states The adiabiatic Hamiltonian matrix in the N = 1 sector contains a SO
mixing term between the doublets:

H
(1)
ad =




ED↑−
(Q) 0 0 ∆SO

0 ED↓−
(Q) ∆SO 0

0 ∆SO ED↑+
(Q) 0

∆SO 0 0 ED↓+
(Q)


 , (S-30)

where the electronic states are now associated to the following adiabatic potentials

Ex(Q) = Ex − ~ωΛ2
x +

~ω
2

(Q+
√

2Λx)2 . (S-31)

We therefore expect the SO interaction to couple the doublets at the points of intersection of the
adiabatic potentials as Q is varied. For ∆SO < ∆, the minimum of the ground doublet parabola is
conserved, and one might expect little change for the line positions in the differential conductance.
In Fig. S-8a we show the one-electron adiabatic potentials including a small spin-orbit coupling
∆SO = 0.125∆ = 0.1 meV and compare them to the bare adiabatic potentials EDτ . The important
conclusion to draw here is that in the parameter regime that we will discuss below in Sec. II C
there is no significant change around the ground state potential energy minimum.

b. Two-electron states - state dependent Franck-Condon shifts We now discuss the situation
in the two-electron charge state. The form of the SO Hamilonian in equation (S-29) shows that
this operator flips both the orbital and spin projection in one of the two electrons in the quantum
dot. Therefore, the two states T 0

0 and S0 with electrons with opposite spins in opposite orbitals
are not affected by this coupling due to Pauli’s exclusion principle. The other states Sτ and T±1

0

are indeed mixed, as revealed by the Hamiltonian matrix block:

H
(2)
ad =




ES−(Q) ∆SO 0 −∆SO 0 0
∆SO ET 1

0
(Q) 0 0 0 −∆SO

0 0 ET 0
0
(Q) 0 0 0

−∆SO 0 0 ET−1
0

(Q) 0 ∆SO

0 0 0 0 ES0
(Q) 0

0 −∆SO 0 ∆SO 0 ES+
(Q)



. (S-32)

Again, we expect the spin-orbit coupling to be only important around the crossings of the adiabatic
potentials as Q is varied. The above matrix thus mixes the two-particle states as follows: (i) The
localized singlets Sτ will be repelled by the triplets T±1

0 . (ii) These triplet states slightly repel each
other due to a second order process (since there is no direct matrix element connecting them).

It now depends on the strength of the spin-orbit coupling relative to the vibrational coupling
energy (shifts of the potential energy minima ×~ω) and the splitting between the “bare”electronic
states (vertical energies at the minima) whether the SO coupling has a negligible impact on our
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FIG. S-8. Adiabatic potentials including spin-orbit interaction ∆SO = 0.125∆ = 0.1 meV. (a) One-particle
mixed doublets from equation (S-30). (b) Two-particle potentials calculated from equation (S-32) in the
subspace mixed by the SO coupling. Adiabatic potentials for ∆SO = 0 are shown in grey for comparison.
For large Q we can associate each adiabatic potential to the marked electronic states. In both charge
sectors, the relevant lower minima are slightly affected by ∆SO.

mechanism or not: the SO coupling only has a big effect at crossings of potential energies which
may be far away from the relevant minima. For the estimated experimental parameters, the
energy difference between the triplet and the ground singlet is noticeable. Moreover, the adiabatic
potentials related to these states are strongly shifted, meaning that the SO coupling will not have a
strong impact on the development of the minima of those if ∆SO < ~ωΛT0,S− . This is corroborated
by Fig. S-8b where the two-electron adiabatic potentials are shown. This is in agreement with
the measurements. However, even in this case the SO coupling plays a role: it is required for the
explanation of the peak amplitudes in a magnetic field as we discuss in Sec. II C 2 b.

For strong spin-orbit coupling, ∆SO ≥ ~ωΛT0,S− , the situation is quite different: All involved
Franck-Condon shifts of the vibrational mode become approximately the same, in clear disagree-
ment with the measurements. Roughly speaking, for strong spin-orbit coupling the states S− and
T0 are strongly mixed and the difference in their coupling to the vibration is “averaged out”.

We conclude two things: (i) The SO interaction (S-28)-(S-29) does not generate a state-dependent
electron-vibration coupling. (ii) When present and strong, the SO interaction rather tends to
weaken it, merely renormalizing the vibration frequency.

B. Master equations - tunneling and relaxation

In this section we describe the employed method for the calculation of the Coulomb-diamond
stability diagrams shown in Figures 2f - 2g and Fig. 3c of the main article.

1. Tunnel processes

In the stationary limit and for weak couplings to the source and drain leads, the occupations
probabilities pa in the dot obey the rate equations

0 =
∑

b6=a
(Wabpb −Wbapa) , (S-33)

where Wab = W s
ab + W d

ab represents the probability per unit time for a state transition |b〉 → |a〉
in the quantum dot. Since we will restrict ourselves to lowest order contributions in Γ, the overall
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scale of Wab, the above rates coincide with those obtained by Fermi’s Golden’s Rule, namely

Wab =
∑

r

W r
ab =

∑

rη

Γrηabf
η
r (Ea − Eb) , (S-34)

where fηr (x) = [1 + exp(η(x − µr)/kBT )]−1 is the Fermi distribution function for an electron
(η = +1) or a hole (η = −1) and the sum runs over the reservoirs r = {s,d}. The tunnel current
Ir that flows out of electrode r is calculated through the standard master equation approach in
the single-electron tunneling regime (SET)

Ir =
∑

ab

(Na −Nb)W r
abpb , (S-35)

where Na = 〈a|N |a〉 is the electron number in the quantum-dot state |a〉. Like the state occupation
probabilities pa obtained from equation (S-33), the current thus also depends on the tunneling
rates Γrηab . The tunnel rates Γrηab are related to the tunnel matrix elements (TMEs) T rσηa←b for an
electron with spin σ entering (η = +1) or leaving (η = −1) the dot and the density of states in
the leads ρ. The latter is assumed to be constant in the model (wide-band limit) and hence

Γrηab = 2π
∑

σ

|T rσηa←b|2ρ . (S-36)

In equation (S-18) we only accounted for the tunnel matrix elements associated to the pure elec-
tronic states |e〉, i.e. the many-body eigenstates of equation (S-5) labeled by e = D±, S±, S0, T0.
These now need to be extended to the electron-vibration states |e, ν〉 by adding the Frank-Condon
overlap Fν′,ν of the vibrational wave-functions involved in the tunnel event, i.e.

T rσηa,ν′←b,ν = Fν′,νT
rση
a←b . (S-37)

where now a, b = D±, S±, S0, T0 and T rσηa←b is given by equation (S-18). The Franck-Condon
coefficient strongly depends on the horizontal shift λ between the adiabatic potentials of the
electronic states. If the dot is initially in the state |b, ν〉, the probability of a transition to a final
state |a, ν′〉 shifted in λ is modulated by7–10

Fν′,ν = 〈ν′|ei
√

2λP |ν〉 = e−λ
2/2(−λ)ν

′−ν
√
ν!

ν′!
Lν
′−ν
ν (λ2) , (S-38)

for ν′ ≥ ν (replace ν′ ↔ ν for ν ≥ ν′) and Lij(x) is the associated Laguerre polynomial. Since
the λ-shift strongly attenuates the transition probability between the involved electronic states
at different regimes of the bias, one of the key aspects of the model is that electronic transitions
to the triplet state allow a change in the number of vibrational quanta while this is exponentially
suppressed for transitions to the ground singlet. We note that also in the presence of vibrations
the overall tunneling rate Γ – entering as an overall factor through equation (S-17), equation (S-
18) and equation (S-37) – merely sets the scale of the current and is irrelevant to the relative
magnitude of the different excitations which is of interest here.

We now proceed with the explicit calculation of the TMEs for the 1 ↔ 2 transitions. Let us
consider “charging” transitions, i.e., those that start from the N = 1 charge sector [the “discharg-
ing” transitions involve the TMEs T rση̄b←a = (T rσηa←b)

∗]. For a strong intrinsic relaxation (see below),
the relevant transitions are those which begin from |D−, 0〉, i.e., the ground doublet D− and no
vibration, ν = 0. For (charging) transitions to a doubly occupied state we use η = 1 and find the
following amplitudes

T rσ
′

Sτ,ν←Dσ−,0 = Fν,0(ΛSτ ,D−)σ̄tr−σ′δτ−δσ′σ̄ , T rσ
′

T 1
0,ν←Dσ−,0 = Fν,0(ΛT0,D−)τ̄ tr+σ′δσ↑δσ′↑ , (S-39)

T rσ
′

T 0
0,ν←Dσ−,0 = Fν,0(ΛT0,D−)τ̄

tr+σ′√
2
δσ′σ̄ , T rσ

′

T−1
0,ν←Dσ−,0

= Fν,0(ΛT0,D−)τ̄ tr+σ′δσ↓δσ′↓ , (S-40)

T rσ
′

S0,ν←Dσ−,0 = Fν,0(ΛS0,D−)σ̄
tr+σ′√

2
δσ′σ̄ . (S-41)

Here we again used the compact notation σ̄ = −σ and τ̄ = −τ . We note that the transition to the
S+ singlet from the ground doublet is forbidden in the SET regime since it would involve an orbital
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flip process which is not present in the tunnel Hamiltonian. The same restriction also applies to
the S− ↔ D+ transitions. However, as discussed in the previous section, a small spin-orbit term
hybridizes the doublets and localized singlet states, making visible the resonance line associated
to this last transition (line E in Fig. 1d of the main article).

2. Intrinsic relaxation

In the measured stability diagrams of the main article, we note that electronic transitions
starting from an excited state are strongly suppressed. In order to account for this effect in the
most simple way we model the influence of an environmental bath by allowing for relaxation
processes. Since the main source of excitations is the electron transport we neglect absorption
processes due to the bath by setting the bath temperature Tb = 0. Furthermore, we allow in each
charge sector for the relaxation of any energetically higher-lying state b into any lower-lying state
a, independently of the spin or the orbital distribution of the involved states. The decay rates are
assumed to be proportional to the energy difference between these states and is assumed to exceed
the tunneling relaxation rates:

W rel
ab = Γrel(Eb − Ea) , Γrel(E) = Γ× (E/0.2 meV). (S-42)

The relaxation rate matrix W rel is thus upper triangular and it is specified in units of Γ. The
corresponding rates W rel

ab are added to the golden rule rates of equation (S-34) and the master
equations are solved using these modified rates. This depends little on the details and has the
main effect of preventing a very strong nonequilibrium state on the quantum dot, enhancing the
ground state occupation probability in each charge sector.

C. Comparison with experiment

In this section we describe how we proceed in finding a unique parameter regime of the model
which is able to qualitatively explain the experimental data. The key effect of state-dependent
vibrational coupling is discussed fully in the zero magnetic field case. The finite magnetic field
experiment brings in some complications due to spin-dependent tunneling and spin-orbit coupling,
which are, however, not crucial for the central point of the article. Finally, we discuss the depen-
dence on the parameters and identify the problem that a standard Anderson-Holstein model has
with explaining the observations.

1. Zero magnetic field

a. Vibrations “off” As already outlined in the experimental Sec. I B we calculate the capaci-
tive effect induced by the gates and the source and drain leads from Fig. S-9a. The left and right
resonance lines (red dashed lines in Fig. S-9a), related to the transition between the N = 1 and
N = 2 ground states D− ↔ S−, are described by the following relations between the top-gate and
the source-drain voltages

V s
sd = − 2αtg

1 + (αs − αd)
Vtg = msVtg , (S-43)

V d
sd = +

2αtg

1− (αs − αd)
Vtg = mdVtg . (S-44)

By extracting the slopes of these lines (ms = −1.1 and md = 0.9) we obtain the following values
for the lever arms: αtg = 0.5 and αs −αd = −0.1. We next extract the electronic parameters, the
subband splitting ∆ and the exchange energy J . To this end, we use the formulas [cf. equation (S-
14), (S-45), and (S-46) below)] for the bias distances µ1 = 1.2 meV and µ2 = 2.7 meV in energy
units (|e| = 1), measured in Fig. S-9a:

µ1 = ET0
− ES− = 2∆− J/4 , (S-45)

µ2 = ES0
− ES− = 2∆ + 3J/4 , (S-46)
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FIG. S-9. Resonance lines fitting for N = 1 ↔ 2 transitions. (a) Vibrations switched “off”[zoom-in of
Fig. S-6b and Fig. 2c in the main article]: The measured µ1 and µ2 voltages are related, respectively, to
electronic transition energies ET0 −ES− and ES0 −ES− . (b) Vibrations switched “on” [zoom-in of Fig. S-
6d and Fig. 2d in the main article]: The measured µ1 here corresponds to ET0 − ES− . In both panels,
dashed lines are visible transitions described by the model: |D−, 0〉 ↔ |S−, 0〉 (red), |D−, 0〉 → |T0, ν〉
with ν = 0− 4 (blue), |D−, 0〉 → |S0, ν〉 with ν = 0− 2 (yellow). Yellow lines are on top of blue lines (see
condition 3 in the text). The |S−, 0〉 → |D−, 1〉 transition is shown in panel (b) in dashed magenta and is
just discernible in the measured differential conductance.

We obtain ∆ = (µ2 + 3µ1)/8 = 0.8 meV and J = µ2 − µ1 = 1.5 meV [cf. equation (S-3)].

b. Vibrations “on” In the regime where the CNT quantum dot is coupled to the vibrational
mode, we aim to account for the following features observed in the experimental data of Fig. S-9b
(Fig. 2d of the main article):

1. The experiment shows that the two-electron ground state is given by the singlet S− and the
first excited state is the triplet T0. In addition, their line positions remain almost unchanged
when turning “on” the vibrational coupling. In our model we thus include the base values
of J and ∆, fixed by their fitting to the electronic spectrum in Fig. S-9a. When allow these
energies to become sensitive to the vibration Q through λ∆ and λJ we must thus impose
the severe restriction that these couplings do not give rise to a polaronic shift.

2. The ground singlet S− transition is very weakly coupled to the vibrational mode, the only
visible lines of the |D−, ν〉 ↔ |S−, ν′〉 transitions is the “zero-phonon” one, ν = ν′ = 0. We
thus require a small value for the horizontal shift between the N = 1 and N = 2 ground state
potential minima, i.e. |ΛS−,D− | � 1. In contrast, the triplet transition shows a whole series
of vibrational sidebands and must therefore require a sizeable coupling, i.e., |ΛT0,D− | ' 0.5,
cf. Fig. 4 of the main article.

3. Although with vibrational coupling turned “off” the excited singlet S0 transition appears
in Fig. S-9a, no transitions |D−, 0〉 ↔ |S0, ν〉 for ν = 1, 2, 3, ... can be distinguished in the
stability diagram Fig. S-9b when they are turned “on”. The approximate relation J ≈ 2~ω
suggests these transitions are in fact superimposed with the triplet sidebands: the energy
difference between S0 and T0, given by the exchange energy J , happens to be commensurate
with the vibration energy ~ω to within the experimental thermal line broadenings. We
require only J = n~ω and determine the best fitting integer n (confirming indeed that
n = 2).

In applying these constraints to the model parameters, we used energies obtained from lever arms
that we extracted independently for Fig. S-9b: in this case we obtain from the slopes (ms = −1.0,
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md = 0.85) of the ground state lines, giving the following values: αtg = 0.46 and αs−αd = −0.08.
For the vibration energy we use the ~ω = 0.85 meV, the fitted value of the mean level spacing
∆Evib obtained specifically for the upper panel in Fig. 2h of the main article.

According to constraint (1) for fixed electronic parameters ∆ and J , we need to adjust the
energy difference between ET0,0 and ES−,0 to the measured bias µ1 ' 0.9 mV in Fig. S-9b. This
implies

µ1 = ET0,0 − ES−,0 = 2∆− J

4
+ ~ω(Λ2

S− − Λ2
T0

) . (S-47)

For the following algebra it is convenient to denote the two free parameters by x = ΛS− and
y = ΛT0 and introduce p = (µ1 − 2∆ + J/4)/~ω ' −0.382. The first condition for the couplings
then reads:

y =
√
x2 − p . (S-48)

The horizontal shift q = ΛT0,D− between the triplet and the doublet can be written as q = y−x/2
[cf. equation (S-21)-(S-22)] and hence we have

y =
x

2
+ q . (S-49)

From condition 2 we have |x| � 1 and |q| ∼ 1. Bearing in mind this restriction, we find a unique
solution for x when requiring both the above two equations to hold simultaneously:

x =
2q

3
± 4

3

√
q2 +

3

4
p . (S-50)

Notice here that we cannot take |q| <
√

3|p|/4 ' 0.54 since this would imply no real-valued
solution. On the other hand, we cannot increase |q| indefinitely either since otherwise the solution
for x grows and will violate condition 2 [i.e., the sidebands associated to S− would become visible].
For q we pick the value q = 0.6 which gives the best overall agreement with the experiment (number
of visible triplet sidebands), implying x = −0.04 and y = 0.62.

Finally, we use the condition 3 to obtain the three vibration couplings. This last requirement
reads with z = ΛS0

and equation (S-47)

n~ω ∼ ES0,0 − ET0,0 = J − ~ω(z2 − y2) , (S-51)

where n is an integer number. By using J = 1.5 meV and ~ω = 0.85 meV, we obtain y2 +
J/~ω ' 2.15 and this implies that n cannot be larger than 2. As mentioned above, n = 2 yields
approximately the same line position for S0 as observed before in the pure electronic regime.
Solving the above equation with n = 2 for z and using the polaronic shifts definitions in terms of
the λ-parameters (equations (S-21) and (S-22)), we obtain the parameter values used in Figures 2d
and 3c in the main article,

λε = 0.28, λ∆ = 0.32, λJ = −0.22. (S-52)

We emphasize that the above procedure essentially determines a unique regime of parameters
consistent with the experimental results. This concerns their qualitative features: conditions 2
and 3 only define a range of possible values for the polaronic shifts and therefore small deviations
of the above obtained values for the λ-parameters produce similar results. However, an Anderson-
Holstein type model (λ∆ = λJ = 0) is certainly not consistent with the measurements, see also
Sec. II C 3. Thus, despite the fact that there are several parameters, the experiment imposes strong
restrictions, in particular, limiting the choice of vibrational couplings. Importantly, the transport
parameters γ, κ and ζ adjust other aspects of the transport spectrum but do not generate or affect
in an essential way the state-dependent vibrational coupling. In particular at B = 0 are not that
important.

2. Magnetic field spectroscopy

We now consider the predictions of the above described model for magnetic field evolution of
the dI/dVsd-peak intensities shown in Fig. 3 of the main article.
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a. Zeeman effect on state-dependent vibrational side bands When applying a static magnetic
field B, the many-electron states in the quantum dot experience a Zeeman shift. Since the field
is perpendicular to the CNT axis the orbital splitting due to B can be neglected11. The field
dependence of the doublet and triplet states with spin projection indices σ = {+1,−1} and
m = {+1, 0,−1}, respectively, is

EDσ±,ν = E
(0)
D±,ν −

1
2σgµBB , (S-53)

ETm0 ,ν = E
(0)
T0,ν
−mgµBB , (S-54)

where E
(0)
x,ν denote the zero-field eigenenergies (S-23). The singlets energies are obviously inde-

pendent of B. (Regarding the negligble importance of the singlet S+, see the remark in the main

article’s text and the footnote 28 there.) Since the N = 1 quantum dot ground state (|D↑−, 0〉,
ν = 0) evolves with −gµBB/2, the energy cost for adding one electron to the quantum dot depends
in all cases on the magnetic field strength, no matter which final state is reached: relative to this
state, the addition energies for the N = 2 states accessible in the sequential tunneling regime (see
Sec. II B) are

∆ES−,ν = ∆E
(0)
S−,ν + 1

2gµBB , (S-55)

∆ET 1
0 ,ν

= ∆E
(0)
T0,ν
− 1

2gµBB , (S-56)

∆ET 0
0 ,ν

= ∆E
(0)
T0,ν

+ 1
2gµBB , (S-57)

∆ES0,ν = ∆E
(0)
S0,ν

+ 1
2gµBB . (S-58)

where ∆E
(0)
x,ν = E

(0)
x,ν−E(0)

D−,0 are the zero-field values. The ground-state singlet S− and the excited

triplet T 1
0 lines thus evolve with opposite slopes as function of B. Since the triplet T0 states have

the interesting vibrational side bands – both in the experiment and in our calculations – their
field dependence is plotted such that the triplet peak positions stay fixed, both here in Fig. S-10
and in Figures 3a - 3c of the main article. In the theoretical plots this is achieved by replacing
Vtg → Vtg + 1

2gµBB.
In Fig. S-10a we show the magnetic-field evolution of the calculated differential conductance

along the line Vsd = Vtg + 5 mV for spin-independent tunnel barriers, i.e., ζ = 0 for all B (but
including SO coupling). What the model accounts for at this level relates to the key observation
made in the measurements: the triplet T+

0 state (vertical) show vibrational side bands, whereas the
ground singlet state S− (left most sloped line) does not. Importantly, the other sloped lines should
not be confused with vibrational side bands of the ground singlet S−: These are the transitions
into the m = 0 component of the triplet, T 0

0 , or the excited singlet S0 (the latter is shifted in about
2~ω with respect to the former, see above in Sec. II C 1) and their vibrational side bands. That
these lines should be there is clear from the theoretical model and its analysis [cf. equation (S-57)
and equation (S-58)] but is also borne out by noting the difference between the distance A and
the following ones B-D [just as in the experimental data in Fig. 3a of the main article]. In the
experiment these Zeeman split-off triplet states in Fig. S-10a, as well as the singlet S0 are not
observed in Fig. 3a of the main article.

b. Suppression of Zeeman split-off states In order to rationalize the observed absence of Zee-
man split-off states in the experiment we now include a spin-dependence in the tunnel amplitudes
through the parameter ζ [cf. equation (S-17)] which we take to be B-dependent:

ζ(B) =
1− e−gµBB/kBT

1 + e−gµBB/kBT
, (S-59)

This phenomenological function ensures that for gµBB � kBT we have ζ = 1, i.e., the tunnel
amplitudes are fully polarized for spin-up carriers, see equation (S-17), whereas for gµBB � kBT
we have ζ = 0. This spin-dependence is physically motivated by the fact that our quantum dot
is contacted by CNT leads as shown in Fig. S-3b and explained in the main article [cf. Fig. 2b].
When increasing the field by a few Tesla the strong spin-polarization in the tunnel amplitudes
suppresses the passage of spin-down electrons through the dot and hence the T 0

0 and S0 lines
(together with their vibrational sidebands) are suppressed since the ground state in the N = 1

sector is D↑−. What remains are the T+
0 excitation and its vibrational sidebands.
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FIG. S-10. Calculated magnetic field evolution for the plotted differential conductance of Fig. 2d of
the main article: (a) Spin-independent tunnel amplitudes (ζ = 0 for all B). (b) Spin-dependent tunnel
amplitudes according to equation (S-59). Further parameters [same as in Fig. 2g of the main article]:
∆ = 0.8 meV, J = 1.5 meV, λε = 0.28, λ∆ = 0.32, λJ = −0.22, ~ω = 0.85 meV, ∆SO = 0.1 meV, κ = 0.3,
γ = −0.5 and T = 0.7 K.

However, the ground singlet S− is also suppressed when assuming this spin-dependence, since
it requires an additional spin-down electron to fill the bonding orbital (τ = −), cf. equation (S-9).
The presence of the ground singlet S− line, but not its vibrational sidebands is the key feature of
the experiment. It is at this point that the spin-orbit coupling does have a decisive effect: when
even a small spin-orbit coupling is included, the singlet S− reappears by borrowing intensity from
the triplet T0 (see also Fig. 4), but without reinstating the unobserved S0 and the Zeeman split-off
states of T0 and their vibrational sidebands. The SO coupling mostly mixes the ground singlet
S− and the triplet T 1

0 states [cf. Sec. II A 3]. In Fig. S-10b [same data as in Fig. 3c of the main
article] we show the magnetic field evolution of the calculated differential conductance along the
line Vsd = Vtg + 5 mV when we include the finite ζ of equation (S-59): indeed the suppression
of the T 0

0 and S0 lines and their sidebands is maintained while only the ground S− has a clear
intensity. This produces the observed intensity pattern of Fig. 3a of the main article. It is at this
last point that the Anderson-Holstein model fails, see Sec. II C 3.

From this we infer that in our device an interplay of spin-filtering of the suspended CNT parts,
functioning as tunnel junctions, and weak spin-orbit interaction in the CNT quantum dot may be
responsible for the suppression of Zeeman splitting. As emphasized above it is not responsible for
the essential effect: The missing vibrational side bands while having a clear singlet ground state
S− line.

3. Influence of the various parameters and the problem of Anderson-Holstein coupling

Having made the detailed comparison with the experiment we now outline the different influence
the various parameters on the differential conductance. We illustrate this for the case of an
Anderson-Holstein type model (λ∆ = λJ = 0) and expose the problem it has in explaining the
data.

In Figures S-11a - S-11c we plot the results obtained for our model, keeping all parameters as
in the main article, except for γ which we vary and making the Anderson-Holstein approximation
by setting λ∆ = λJ = 0. Also, to obtain a similar number of visible vibrational sidebands we
have to choose a larger value of λε = 1 in this case. To find agreement with the experiment the
lines with positive slope should first of all be suppressed: these are vibrational sidebands relating
to the |D−, ν〉 ↔ |S−, 0〉 where ν = 1, 2, 3, .. quanta are excited for N = 1. This can be done by
increasing the junction asymmetry γ a lot. The best result obtainable this way, Fig. S-11c should
now be compared with Fig. 2g of the main article: as one adjusts γ to suppress the vibrational
sidebands relating to the S− (both with positive and negative slope) the ground state ν = 0
transition also becomes suppressed, resulting in a severe current blockade at low bias Vsd . ~ω.
In contrast, in Fig. 2g these lines are not present due to the state-dependent vibrational coupling
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FIG. S-11. Differential conductance at B = 0 for the Anderson-Holstein model (λ∆ = λJ = 0) with
λε = 1. The other parameters are the same as for the state-dependent vibrational coupling model, i.e.,
∆ = 0.8 meV, J = 1.5 meV, ~ω = 0.85 meV, κ = 0.3, ζ = 0.0 and T = 0.7 K. The panels show results
for increasing junction asymmetry γ: (a) γ = 0, (b) γ = −0.5 and (c) γ = −0.9. For completeness we
have also included here the SO coupling ∆SO = 0.1 meV as we also did in our model with state-dependent
coupling (λ∆, λJ 6= 0), although this has little effect at B = 0.

λ∆ and λJ which does not block the transport at low voltage. This allows for a much smaller
asymmetry, leaving the ground-state transition fully visible.

This problem becomes more pressing when we now consider the magnetic field evolution: while
S− and its sidebands with negative Vtg-slope are still present they are quasi-degenerate with the
triplet excitations at B = 0 in panel (c). Turning on the field B they will however split off from
the triplet by the Zeeman effect. Also in this case one must assume a spin-dependent tunneling ζ
[equation (S-59)] to find agreement with the experimental data of Fig. 3a where the Zeeman-split
off states are not observed. As before, this also suppresses the S− transition, both the ground
one (ν = 0) and all vibrational sidebands (ν > 0). However, when turning on the SO coupling
again to remedy this, all S− transition are restored, i.e., including the vibrational side bands
(this happens again by borrowing intensity from the T0 triplet). This disagrees with the key
experimental observation that only the triplet transitions show vibrational side bands.

The above discussion underlines the importance of the experimental advance reported in the
main article: by being able to switch “on” and “off” the vibrational coupling as well as performing
magnetic field transport spectroscopy of the quantum dot states, we are able to identify electronic
states with different coupling to the vibration.

Next, by varying orbital asymmetry in the tunneling κ one changes the magnitude of the S−
transitions relative to the T0 and S0 transitions: when enhancing κ, the tunneling in the antibond-
ing (|−〉) orbital is enhanced: since S− has two electrons in that orbital, whereas T0 and S0 have
only one, this enhances the former relative to the latter. As above, κ cannot be adjusted to find
agreement with the experiment: as in the discussion of the γ dependence, it cannot suppress the
vibrational side bands of S− relative to the S− transition: this requires state-dependent coupling.

Thus the key problem in trying to use an Anderson-Holstein model to explain state-dependent
vibration coupling lies in its basic assumption that all electronic states with the same charge couple
equally to the vibration. It fails because it either does not at all show the D− → S− excitation
(i.e., neither the ground (ν = 0) or any vibrational sidebands ν 6= 0) or it does show it together
with all its vibrational sidebands. Which of the two is the case depends on parameters, but an
apparent state-dependent vibrational coupling seems impossible to achieve. The sidebands for the
singlet S−, relative to the ground transition, are intense as those of the triplet T0 relative to its
ground transition. Neither junction (γ), orbital (κ) nor spin-asymmetry (ζ) can get around this
fact.
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