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Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by

experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific ‘defect’ patterns

in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets.

Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal

and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we

investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings

demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined

systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic

crystals which is a promising approach for the production of dynamically programmable metamaterials.

1 Introduction

Microfluidic devices have become an important tool in chem-

istry and biology, where they are increasingly used, for ex-

ample, in analytic essays,1,2 micro-reactions3 or flow cytom-

etry.4 These applications typically involve manipulation and

control of immersed objects, such as droplets, vesicles or

cells,5 that interact hydrodynamically through the flow per-

turbations of the surrounding fluid. A detailed understand-

ing of the correlated motion induced by long-ranged hydro-

dynamic interactions in microfluidic devices is therefore es-

sential for efficient control of the flow of micro-particles. In

recent years, a number of studies brought out that microflu-

idic droplet systems are especially well suited to steer their

dynamics by modifying particle properties and/or device ge-

ometry.6–9 Consequently, microfluidic droplets have become

both a test-bed and a model system to study collective be-

haviour and self-organisation in non-equilibrium many-body

systems.10 Typically, a pressure-driven flow is imposed such

that the system is out of equilibrium, and at low Reynolds

number viscous dissipation dominates over inertia. A theo-

retical description of such driven dissipative systems remains
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challenging, and thus experiments and computer simulations

are basic tools to study the dynamics of microfluidic droplet

ensembles.

When microfluidic droplets are confined between two par-

allel plates, the geometry is effectively two-dimensional (2D)

and the scattered flow has a characteristic dipolar form.11 In

this case, the hydrodynamic interactions are marginally long-

ranged, i.e., the decay exponent is equal to the dimensionality

of the system.12 In contrast to quasi-1D geometries, where the

hydrodynamic interactions are strongly screened, the dipolar

interactions in quasi-2D geometries lead to complex collec-

tive phenomena.10 Dipolar flow fields are also characteristic

for some types of self-propelled particles, such as droplets

driven by Marangoni flows or by chemical reactions on their

surface.13 Some progress has been made in understanding the

dynamics of rigid and deformable particles and their hydro-

dynamic coupling in 2D pressure-driven flow. Pairs of rigid

particles in Poiseuille flow were shown to follow either bound

or unbound trajectories, depending on the relative position

of the particles, their absolute position in a channel, and the

strength of confinement.14 Linear arrays of rigid spheres and

deformable drops aligned in the flow direction undergo a pair-

ing instability.15 While arrays of spherical particles are also

unstable to lateral perturbations, droplet arrays are stabilised

by quadrupolar interactions due to deformation.15 Asymmet-

ric particles align with the flow due to self-interactions, and

migrate to the centreline of the confining channel.16–18 For

highly asymmetric particles, the time-scales for alignment and

focusing separate due to the distinct hydrodynamic mecha-

nisms involved. The focusing of asymmetric particles re-

sembles a damped harmonic oscillator, whereas symmetric
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particles oscillate between side-walls.16 In 2D ensembles of

droplets, the dipolar hydrodynamic interactions give rise to

sound and shock waves that are superposed on droplet diffu-

sion. The waves are due to a density-velocity coupling and

can be described by a 1D Burgers equation.10,19

A particular feature arises in regular arrays of droplets, so

called microfluidic crystals, where the flowing droplets have

a spatial order with a well-defined spacing. These crystals

can exhibit collective oscillations with a dispersion relation

akin to solid state phonons.20,21 These microfluidic phonon

modes are neither growing nor decaying, and are thus a re-

alisation of marginally stable oscillatory modes in a dissipa-

tive system made possible by the imposed symmetry-breaking

flow. Practically, however, the possibility to observe these

modes is limited by non-linear instabilities10,22 and the strong

dependence on initial conditions. Only recently, an experi-

mental technique was proposed to systematically excite mi-

crofluidic phonons, and the observed modes revealed a cou-

pling mechanism, induced by lateral confinement, between

longitudinal and transverse modes that was confirmed by com-

puter simulations.23 The ability to control the dynamic prop-

erties by tuning the flow characteristics opens interesting per-

spectives regarding dynamically programmable metamaterials

which could be produced by modulating the refractive index

of droplet crystals.24–26

Here we investigate collective modes in dense microfluidic

crystals under confinement both experimentally and by com-

puter simulations. We show that distinct oscillatory behaviour

can be systematically excited by varying the initial conditions

through the introduction of specific ‘defect’ patterns. The ob-

served modes are analysed and characterised, and reveal sev-

eral interesting dynamic features, such as cascades of later-

ally offset pairs and mode coupling. The results from exper-

iments and computer simulations agree quantitatively. The

long-time behaviour is investigated in computer simulations

and used to identify possible instabilities and their underlying

mechanisms. Our approach demonstrates the rich dynamics

that emerges from hydrodynamic interactions in confined mi-

crofluidic droplet ensembles. The results show good agree-

ment with a linearised far-field theory10 even in the dense

droplet regime. This makes it very promising to apply the

techniques to other crowded microfluidic systems, such as

self-propelled particles.13

The remainder of the article is organised as follows: In sec-

tion 2, we review the hydrodynamics of quasi-2D systems and

the linearised far-field theory for microfluidic phonons. Sec-

tion 3 describes the experimental techniques and the simula-

tion approach we used to study microfluidic droplet systems.

In section 4, we present excitation mechanisms for collective

waves and analyse the observed oscillations and instabilities.

A concluding discussion is given in section 5.

y

x
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Fig. 1 Schematic illustration of the quasi-2D flow geometry.

Flattened droplets experience a friction at the top and bottom plates

which counteracts the hydrodynamic drag. When the droplets move

relative to the imposed flow, they act as a mass dipole with a sink at

their leading edge and a source at their trailing edge.

2 Microdroplet trains in quasi-2D flow

We consider droplets that are confined between two parallel

plates and thus move in a quasi-2D geometry, cf. figure 1.

The flow and the hydrodynamic interactions in this geometry

differ qualitatively from the bulk case due to momentum ab-

sorption at the confining plates which leads to screening of the

far-field. The fluid flow satisfies no-slip boundary conditions

on the channel walls, and since the height H of the channel is

small compared to the lateral width W , the velocity gradient

in the z-direction is much larger than in the planar directions.

In the Darcy approximation ∂ 2
z ≫ ∂ 2

x , ∂ 2
z ≫ ∂ 2

y , the solution

of the Stokes equation has a quasi-2D Hele-Shaw form27

u(x,y) =
1

H

∫ H/2

−H/2
dh

h2 −H2/4

2η
∇p(x,y)

=− H2

12η
∇p(x,y).

(1)

At low Reynolds number, the flow is incompressible and

Eq. (1) can be written as a Laplace equation

∇2φ(x,y) = 0 (2)

u(x,y) = ∇φ(x,y) (3)

where the effective potential is defined through the pressure

φ =−H2 p/12η with η the dynamic viscosity of the fluid.

We briefly review here the theoretical description presented

in Refs.10,21 When a droplet is moving through the fluid with a

velocity δu = u∞ −ud relative to the externally imposed flow

u∞ = u∞x̂, it acts as a momentum monopole whose flux scales

as δu2. However, due to the absorption of momentum at the

top and bottom plates the flux is not conserved. The absorbed

flux scales as δu/h, therefore the flow field of the momen-

tum monopole ∂rδu ∝ −δu/h decays exponentially.11 Thus,

unlike in the bulk case, the leading contribution is the mass
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dipole created by the droplet. The moving droplet pushes fluid

out at the upstream edge and draws fluid in at the downstream

edge, giving rise to a characteristic dipolar flow field. For-

mally, the flow perturbation at a distance r from a droplet is

obtained by solving the Laplace equation with boundary con-

ditions of zero mass flux (zero perpendicular velocity) through

the droplet interface.28 This gives the dipolar potential and

scattered velocity field around a droplet of radius R

φd(r) = R2δu · r̂

r
(4)

u(r) = R2δu · I−2r̂r̂

r2
. (5)

The 2D potential flow can also be described by a complex po-

tential w(x+ iy) = φ(x,y)+ iψ(x,y) where the imaginary part

is the stream function ψ(x,y). The flow velocity is then given

by ux − iuy = dw/dz with z = x+ iy. For an imposed flow in

the x-direction the complex dipolar potential is then

wd(z) = R2δu
1

z
. (6)

A droplet moving in the imposed flow experiences a hydro-

dynamic drag that can be written as

Fh =
1

2
ξ ud +

ξ

R2 ∑Res[w] =
1

2
ξ ud +ξ δu, (7)

where the drag coefficient ξ = 24πηR2/H is introduced. The

second term arises from the self-interaction of the droplet with

its dipole.10

If the size R of the droplets exceeds the channel height H,

they are flattened and experience a friction with the top and

bottom plates which can be modelled as

Ff =−ζ ud . (8)

Since inertial effects can be neglected at low Reynolds num-

ber, we can use force balance Fh+Ff = 0 to obtain the equation

of motion for the droplet

ud = µu∞ =

(

1

2
+

ζ

ξ

)−1

u∞, (9)

where µ = ud/u∞ is the mobility of the droplet in the imposed

flow.

In the presence of lateral side-walls, i.e., in a microfluidic

channel, additional boundary conditions have to be satisfied.

The simple dipole potential (6) has a non-vanishing flux at the

side-walls which can be eliminated by placing image dipoles

inside the wall.29,30 These dipoles form an infinite array per-

pendicular to the flow direction. The flow potential of a single

droplet is obtained by summing over the infinite dipole array,

and then rescaling by a compressibility factor C to account for

the finite size R of the droplets.10,29 The result is21

wd(z) =C · πR2δu

2W

{

coth
[ π

2W
(z− iyd)

]

+coth
[ π

2W
(z− i(W − yd))

]}

,

(10)

where

C =
2W

πR



cot

(

πR

2W

)

− sin
(

πR
W

)

cos
(

πR
W

)

+ cos
(

2πyd
W

)





−1

. (11)

The equation of motion for a confined droplet can be obtained

as above and keeps the form ud = µu∞ if the mobility is re-

placed by

µ =C ·
(

C− 1

2
+

ζ

ξ

)−1

. (12)

In an ensemble of droplets, the solution of the Laplace equa-

tion is considerably more complicated because the boundary

conditions have to be satisfied additionally on all droplet sur-

faces. Although this is in principle possible using the method

of images, the large number of reflections that arise makes it

unreasonably intricate in practice. One therefore resorts to the

leading-order approximation where the drag force is given by

a superposition of the flow fields created by the other droplets.

For the n-th droplet in an ensemble, the equation of motion

thus is10

un,x − iun,y = µ

(

u∞ +∑
j 6=i

dwd

dz

∣

∣

∣

∣

z j−zn

)

. (13)

This approximation is valid if the inter-droplet distance is

larger than the droplet size r j − rn ≫ R, and we will see be-

low that the predictions based on Eq. (13) work well even for

dense droplet trains.

For a regular train of droplets flowing with an ‘equilib-

rium’ spacing a in the centre of the channel, the displacements

δ zn = zn−na are assumed to be small and the derivative of the

potential (10) can be expanded. To first order, the equations of

motion are then given by10,23

˙δxn = 2B
∞

∑
j=1

coth

(

a jπ

W

)

× csch2

(

a jπ

W

)

(δxn+ j −δxn− j)

˙δyn = −B
∞

∑
j=1

[

1+ cosh

(

a jπ

W

)]2

× csch3

(

a jπ

W

)

(δyn+ j −δyn− j) ,

(14)
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with prefactor B = µ(u∞ − ud)(π
2R/W 2) tan(πR/W ). These

equations describe waves, and by plugging in a plane-wave

solution, we arrive at the dispersion relations

ω‖(k) =−4B
∞

∑
j=1

coth

(

a jπ

W

)

csch2

(

a jπ

W

)

sin( jka)

ω⊥(k) = 2B
∞

∑
j=1

[

1+ cosh

(

a jπ

W

)]2

× csch3

(

a jπ

W

)

sin( jka).

(15)

3 Experimental and computational droplet mi-

crofluidics

Having discussed the flow fields and the forces acting on a

single droplet, we discuss the experimental realisation as well

as computer simulations of flowing droplets in a straight mi-

crofluidic channel.

3.1 Microchip fabrication and droplet production

Microfluidic devices were fabricated in Sylgard 184 (Dow

Corning) using standard soft lithographic protocols,31,32 and

the flow rates were volume-controlled by syringe pumps.

Mono-disperse water droplets were generated in n-hexadecane

(ρ = 773kg/m3, η = 3mPa s) with 2 wt% of the surfactant

Span 80 using a step geometry,32,33. The microchannel has

uniform height and width of H×W ≈ 120 µm×210 µm. Typ-

ical flow velocities are ud ≈ 250 µm/s for the droplet, and

uoil ≈ 500 µm/s for the continuous oil phase. The correspond-

ing Reynolds and Peclet number are Re = ρuoilR/η ≈ 10−2

and Pe = uoilR/D ≈ 108, respectively.

3.2 Simulation approach: Multi-particle collision dy-

namics

In order to investigate the origin of our experimental obser-

vations and the validity of the approximations in the theoreti-

cal description, we conduct computer simulations using multi-

particle collision dynamics (MPC). MPC is a mesoscopic sim-

ulation method that is capable of reproducing the full hydro-

dynamics of a fluid.34–36 Since it does not rely on the assump-

tion of a specific flow perturbation, it is well suited to test the

accuracy of the semi-analytical theory based on dipolar flow

fields to describe the droplet interactions in a dense and con-

fined system. The fluid is modelled explicitly by idealised

point-like particles of mass m. The fluid dynamics emerges

from local mass, momentum and energy conservation in the

particle ensemble, whose equation of state is that of an ideal

gas. The update of particle positions and momenta mimics the

underlying kinetics and is split into successive streaming and

collision steps. During the streaming step the particle moves

ballistically,

ri = ri +hvi, (16)

where h is the time interval between collisions. In the colli-

sion step, the particles are sorted into cubic collision cells of

size ∆x. In each cell, the particles then exchange momentum

while the momentum of the collision cell is conserved. Vari-

ous collision rules have been proposed in the literature and in

this work, we employ a collision rule that also conserves an-

gular momentum of the cell.37 The collisions are augmented

with an Anderson-like thermostat to control the temperature.

The overall update of particle velocities is

v∗i = vC +vran
i − ∑

j∈C

vran
j

NC

+mΠ
−1 ∑

j∈C

[

r j,C ×
(

v j −vran
j

)]

× ri,C,
(17)

where vC is the centre of mass velocity of the collision cell

containing NC particles, Π is the moment of inertia tensor of

the particles, ri,C = ri−rC is the relative particle position, and

vran
i is a random velocity drawn from a Maxwell-Boltzmann

distribution. This collision operator is denoted as MPC-AT+a

in the nomenclature of Ref.38. In addition, the cell grid is

shifted randomly before each collision step to restore Galilean

invariance of the system.39 The dynamic viscosity η of the

MPC-AT+a fluid for large number density n (particles per cell)

is then given by

η =
nkBT h

∆xd

(

n

n− (d +2)/4
− 1

2

)

+
m(n−7/5)

24∆xd−2h
, (18)

where kBT is the imposed temperature and d = 2 is the dimen-

sionality of the system.

Since the droplets hardly deform in the experiment, we

model them as rigid discs of radius R that are coupled to

the fluid by a no-slip boundary condition, i.e., v′ = −v+ 2vb

where vb is the boundary velocity. It is to be noted that this is

effectively a different boundary condition than the one used in

deriving Eq. (4), however, we have found in practice that this

can be accounted for by the calibration procedure described

below and does not lead to a relevant difference in the mea-

surements. To apply the collision rule in the cells that are

partly or fully occupied by the rigid discs, the correspond-

ing volume is filled with virtual particles that are distributed

randomly within a layer of width
√

2a and whose velocities

are distributed according to a Maxwell-Boltzmann distribution

around the boundary velocity vb.37 The momentum change

of the fluid particles during streaming and collisions is accu-

mulated and leads to the boundary force Fb that moves the

discs.40
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