000202881 001__ 202881
000202881 005__ 20240711085700.0
000202881 0247_ $$2Handle$$a2128/9033
000202881 0247_ $$2ISSN$$a1866-1793
000202881 020__ $$a978-3-95806-069-2
000202881 037__ $$aFZJ-2015-05029
000202881 1001_ $$0P:(DE-Juel1)136662$$aKeuter, Thomas$$b0$$eCorresponding author$$gmale$$ufzj
000202881 245__ $$aInnenbeschichtung poröser Körper mittels Atomlagenabscheidung zur Redoxstabilisierung anodengestützter Festoxidbrennstoffzellen$$f2015-06-30
000202881 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000202881 300__ $$aXII, 133 S.
000202881 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1439215381_17758
000202881 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000202881 3367_ $$02$$2EndNote$$aThesis
000202881 3367_ $$2DRIVER$$adoctoralThesis
000202881 3367_ $$2BibTeX$$aPHDTHESIS
000202881 3367_ $$2DataCite$$aOutput Types/Dissertation
000202881 3367_ $$2ORCID$$aDISSERTATION
000202881 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v273
000202881 502__ $$aUniversität Bochum, Diss., 2015$$bDr.$$cUniversität Bochum$$d2015
000202881 520__ $$aFuel cells convert directly the chemical energy of fuels into electrical energy with a high efficiency and are flexible in use due to their modular design. Anode-supported Solid Oxide Fuel Cells (SOFCs) consist of a nickel/8YSZ substrate (8YSZ ˆ= with 8 mol-% yttria stabilized zirconia), a nickel/8YSZ anode, an 8YSZ electrolyte, and a cathode. In case of reoxidation of the nickel in the substrate, the substrate expands in lateral direction and creates tensile stresses and cracks in the electrolyte, resulting in a decrease of the cell performance or a complete cell failure. The aim of this work is the stabilization of anode-supported SOFCs with respect to reoxidation by coating the inner surface of the porous substrate, using the process of atomic layer deposition (ALD). The deposited layer protects the nickel in the substrate against oxidation and prevents in this way a crack formation in the electrolyte and a cell failure. More generally, the inner surface coating of porous media using ALD is investigated experimentally and described theoretically by a model. Atomic layer deposition of zirconia using the precursors TEMAZ and O$_{2}$ was developed in the in-house ALD machine, because this process is not described in literature. In order to model atomic layer deposition, Knudsen diffusion and second-order surface reaction kinetics of the precursors were combined and the thickness of the deposited layer within the porous medium was predicted. The inner surface coating of Ni/8YSZ substrates was proven by a conformal coating of the grains and the ALD model was verified. The zirconia layer protected the coated parts of the substrate for at least 17 redox cycles. It was not possible to coat the entire inner surface of the substrate and consequently, reoxidation of the substrate led to cracks in the electrolyte. The zirconia layer did not influence the electrochemical performance of the SOFC leading to the conclusion that a complete coating of the substrate can solve the problem of reoxidation. Additionally, the combination of a thin electrolyte and a low operating temperature is promising, too.
000202881 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000202881 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202881 650_7 $$xDiss.
000202881 8564_ $$uhttps://juser.fz-juelich.de/record/202881/files/Energie_Umwelt_273.pdf$$yOpenAccess
000202881 8564_ $$uhttps://juser.fz-juelich.de/record/202881/files/Energie_Umwelt_273.gif?subformat=icon$$xicon$$yOpenAccess
000202881 8564_ $$uhttps://juser.fz-juelich.de/record/202881/files/Energie_Umwelt_273.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202881 8564_ $$uhttps://juser.fz-juelich.de/record/202881/files/Energie_Umwelt_273.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202881 8564_ $$uhttps://juser.fz-juelich.de/record/202881/files/Energie_Umwelt_273.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202881 909CO $$ooai:juser.fz-juelich.de:202881$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000202881 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202881 9141_ $$y2015
000202881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136662$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202881 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000202881 920__ $$lyes
000202881 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000202881 9801_ $$aFullTexts
000202881 980__ $$aphd
000202881 980__ $$aVDB
000202881 980__ $$aUNRESTRICTED
000202881 980__ $$abook
000202881 980__ $$aI:(DE-Juel1)IEK-1-20101013
000202881 980__ $$aFullTexts
000202881 981__ $$aI:(DE-Juel1)IMD-2-20101013