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We calculate for the first time the form factors of the semileptonic decays of the Ds meson to η and η0

using lattice techniques. As a by-product of the calculation we obtain the masses and leading distribution
amplitudes of the η and η0 mesons. We use Nf ¼ 2þ 1 nonperturbatively improved clover fermions on
configurations with a lattice spacing a ∼ 0.075 fm. We are able to obtain clear signals for relevant matrix
elements, using several noise reduction techniques, for both the connected and the disconnected
contributions. This includes a new method for reducing the variance of pseudoscalar disconnected

two-point functions. At zero momentum transfer, we obtain for the scalar form factors, jfDs→η
0 j ¼

0.564ð11Þ and jfDs→η0
0 j ¼ 0.437ð18Þ at Mπ ≈ 470 MeV, as well as jfDs→η

0 j ¼ 0.542ð13Þ and jfDs→η0
0 j ¼

0.404ð25Þ at Mπ ≈ 370 MeV, where the errors are statistical only.
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I. INTRODUCTION

In general, semileptonic decays of charmed mesons are
well studied both experimentally and theoretically, in
particular, using lattice techniques. However, this is not
the case for the Ds meson for which the main semileptonic
modes are to the ϕ, η and η0 mesons. Lattice studies of these
decays are technically challenging due to the presence of
disconnected quark-line contributions. So far only the form
factor for the decay Ds → ϕlν̄l has been computed,
omitting the disconnected contributions [1]. QCD sum
rules provide an alternative approach based on the operator
product expansion (OPE) and analyticity using the
assumption of quark-hadron duality. There is one result
using the standard local OPE in terms of condensates [2]
and two using light cone OPE in terms of distribution
amplitudes [3,4]. These studies utilize the η and η0
distribution amplitudes, which, in principle, can be calcu-
lated on the lattice. A first principles calculation of the form
factors for Ds → ηð0Þlν̄l therefore can serve as a cross-
check on the assumptions of the sum rule approach and is
of phenomenological interest in itself, providing informa-
tion on the internal structure of the mesons in the final state
(see, for example, Ref. [5]). In terms of experimental
results, there are no measurements of the form factors
for these modes so far and only the branching fractions
for Ds → ηð0Þlν̄l have been determined by the CLEO
Collaboration [6].
In this article, we report on our exploratory study of the

Ds to ηð0Þlν̄l semileptonic decay form factors using lattice

techniques. Some preliminary results have been presented
in Refs. [7–9]. The relevant matrix elements for these decay
modes are parametrized as follows:

hηð0ÞðkÞjVμjDsðpÞi ¼ fþðq2Þ
�
ðpþ kÞμ −

M2
Ds

−M2
ηð0Þ

q2
qμ

�

þ f0ðq2Þ
M2

Ds
−M2

ηð0Þ

q2
qμ; ð1Þ

where Vμ is a vector current at position
1 0, qμ ¼ pμ − kμ is

the four-momentum transfer and MDs
and Mηð0Þ are the

masses of the Ds and the ηð0Þ mesons, respectively. This
matrix element is characterized by two form factors, f0ðq2Þ
and fþðq2Þ. In this work we focus on the scalar form factor
f0ðq2Þ, which we can also obtain from a scalar current
S ¼ s̄c [10],

f0ðq2Þ ¼
mc −ms

M2
Ds

−M2
ηð0Þ

hηð0ÞjSjDsi: ð2Þ

We use this relation because the combination ðmc −msÞS
[and therefore f0ðq2Þ] is a renormalization group invari-
ant, provided the vector mass difference mc −ms ¼
ðκ−1c − κ−1s Þ=ð2aÞ is used. Equation (2) is also free of
additive renormalization.
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1In practice one averages VμðyÞeiq·y over all positions y,
injecting the spatial momentum q required by momentum
conservation, to increase statistics.
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The three-point function needed to compute the form
factor contains quark-line disconnected loops (see Fig. 1).
Often corrections from disconnected loops are numerically
small. However, their impact on the three-point function is
enhanced by a factor of about 3, due to the summation over
three light quark flavors. Moreover, in the pseudoscalar case
the disconnected quark loops couple to the axial anomaly. In
spite of the computational expense and the inferior quality of
the signal, relative to that of the quark-line connected
contribution, the calculation of the disconnected contribution
turns out to be feasible and its impact is significant [7,11].
Therefore, these decay modes also provide a perfect play-
ground for testing a variety of techniques for calculating the
disconnected quark-line loops.
We use QCDSF Nf ¼ 2þ 1 configurations [12,13] that

were generated using a novel approach for varying the sea
quark masses, which is ideal for studying flavor physics in
the SU(3) flavor basis. The flavor singlet mass average of
the three light quarks, 1

3
ðmu þmd þmsÞ, is kept fixed so

that the combination 2M2
K þM2

π computed from the kaon
mass, MK , and pion mass, Mπ, approximately coincides
with the physical value. Starting from the flavor SU(3)
symmetric point (mu ¼ md ¼ ms), ml ¼ mu ¼ md is
reduced as ms is increased.
The outline of this paper is as follows: in the next section

we describe the technical details of the lattice calculation.
Before we can address decays of the Ds meson into final
states including the η or η0 mesons, we have to construct the
corresponding interpolators. Therefore, in Sec. III, we
determine the mixing of the physical states relative to
the octet-singlet basis. We present a new method to reduce
statistical noise and obtain the η and η0 masses and the
leading distribution amplitudes. The details of the new
method, described in Sec. III B, are quite technical and can
be skipped by those readers who are primarily interested in
the final results. In Sec. IV we describe our methods for
extracting the matrix elements relevant for the computation
of the form factors. Subsequently, these are obtained in the
same section, before we conclude.

II. DETAILS OF THE LATTICE CALCULATION

The QCDSF Nf ¼ 2þ 1 configurations were generated
with the tree level Symanzik improved gluon action and the
stout link nonperturbatively improved clover fermion
action (SLiNC) [14]. We use the same action for the
valence-only charm quark. The SLiNC action is on-shell

OðaÞ improved. In general, there will be OðaÞ correction
term, as̄D

↔

μγμc, to Eq. (2). However, this term can be
eliminated using the equations of motion, and one can show
that the nonsinglet improvement coefficients bS ¼ −2bm
[15,16] cancel from Eq. (2) so that f0ðq2Þ is automatically
OðaÞ improved.
The parameters are summarized in Table I. So far we

have used only one lattice spacing a ∼ 0.075 fm (deter-
mined using the quantityw0 proposed in Ref. [17]), and one
volume V4 ¼ L3T ¼ 243 × 48a4, which corresponds to a
physical spatial extent L ∼ 1.8 fm. Our value of the lattice
spacing is about 10% smaller than the value of
Refs. [12,13] (a ∼ 0.083 fm) which was obtained from
the average octet baryon mass, but is consistent with a
newer determination (a ∼ 0.074ð2Þ fm) in Ref. [18]. We
analyzed 939 configurations at the flavor symmetric point
(ml ¼ ms), for which Mπ ¼ MK ¼ 470.5ð1.8Þ MeV (Set
S), and 239 configurations (ml < ms) with Mπ ¼
370.1ð3.3Þ MeV and MK ¼ 509.1ð2.7Þ MeV (Set A).
Because of the different value for the lattice spacing, these
masses differ from the numbers given in Refs. [12,13]. In
particular, the average octet pion mass exceeds the exper-
imental value ½ðM2

π þ 2M2
KÞ=3�1=2 ≈ 411 MeV by about

60 MeV, meaning that extrapolating to the physical pion
mass, we would end up with unphysically heavy kaons.
The charm quark mass mc was tuned so that the spin
averaged 1S charmonium mass, M1S ¼ 1

4
ðMηc þ 3MJ=ψ Þ,

corresponds to the experimental value [19].
In order to reduce autocorrelations, the configurations

were sampled every 5 Monte Carlo trajectories for Set S
and every 10 trajectories for Set A. In addition, the location
of the source was chosen randomly on each configuration.
However, significant correlations were found in the data
when calculating the masses of the π, η and η0 mesons, and
we chose a conservative bin size of 5 (25 molecular
dynamics time units) for Set S and 2 (20 molecular
dynamics time units) for Set A. The mass of the Ds, the
mixing angle discussed in Sec. III C and the form factor,
f0ðq2Þ, did not show any significant autocorrelations, so we
did not use binning for these observables.
For all source and sink interpolators, we used a gauge

invariant Gaussian smearing (Wuppertal smearing [20,21])
with APE smeared gauge fields [22] in the spatial directions.
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FIG. 1 (color online). Connected (first term) and disconnected
(second term) fermion loop diagrams. We use stochastic methods
to calculate the blue dashed fermion lines. The labeling of the
four-momenta p; q; k reflects the conventions adopted in Eq. (1).

TABLE I. The simulation parameters. Set S corresponds to the
SU(3) flavor symmetric point where the pion, kaon, and eta
mesons are mass-degenerate while in Set A the symmetry
between the strange quark and the light quarks is broken. The
lattice size is 243 × 48 in both cases and β ¼ 10=g2, rather than
β ¼ 6=g2.

Set β κl κs Mπ LMπ Configurations

S 5.5 0.12090 0.12090 470.5ð1.8ÞMeV 4.3 939
A 5.5 0.12104 0.12062 370.1ð3.3ÞMeV 3.3 239
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The smearing parameters were chosen to minimize excited
state contributions to the connected two-point functions.
Disconnected fermion loops appear in both two- and

three-point functions. These loops need to be evaluated at
different times and momenta. They can be obtained from
the inverse of the dimensionless lattice Dirac operator, M,
in the following way:

C1 ptðt; p; x0Þ ¼
X
x

expðip · ðx − x0ÞÞtr

×
�X
x0; x00

Γϕðx; x00ÞM−1ðt; x00; t; x0Þϕðx0; xÞ
�
;

ð3Þ
where the Dirac matrix for a pseudoscalar meson is Γ ¼ γ5
and ϕ is the smearing function. The origin for the Fourier
transformation is denoted as x0. Since M satisfies γ5
Hermiticity, the smearing function is Hermitian and com-
mutes with γ5, the disconnected loop is real in coordinate
space and C1 ptðt; pÞ ¼ C1 ptðt;−pÞ�. Details of the estima-
tion of the disconnected loops are given in Appendix A.

III. η AND η0 STATES

Prior to determining decays of the Ds into the η or η0
mesons, we have to construct these physical states. We first
discuss the general mixing formalism, relative to the octet-
singlet basis, then determine the respective masses and
compare our results to other studies. In Sec. III B, which is
technical and can be skipped on first reading, we discuss a
particular problem we encountered, due to the insufficient
sampling across topological sectors on one of our ensem-
bles. The method we suggest to resolve this turns out to be
of a more general applicability and significantly reduces
statistical errors. Finally, in Sec. III C we determine mixing
angles and leading distribution amplitudes of these states.

A. Extracting physical states

The correct creation operators for the η and η0 states are a
priori unknown in the flavor nonsymmetric case (Set A).
We start from singlet η1 ¼ 1ffiffi

3
p ðuūþ dd̄þ ss̄Þ and octet

η8 ¼ 1ffiffi
6

p ðuūþ dd̄ − 2ss̄Þ states and first calculate a 2 × 2

correlation matrix of two-point functions2

hC2 ptðt; pÞi ¼
 hC88

2 ptðt; pÞi hC81
2 ptðt; pÞi

hC18
2 ptðt; pÞi hC11

2 ptðt; pÞi

!

≡
 
hO8ðt; pÞO†

8ð0Þi hO8ðt; pÞO†
1ð0Þi

hO1ðt; pÞO†
8ð0Þi hO1ðt; pÞO†

1ð0Þi

!
;

ð4Þ

where O8 and O1 are smeared interpolators for the octet
and singlet states, respectively. Each element includes
disconnected fermion loop contributions. The latter were
averaged over all possible source positions x0 in space
and time, shifting the source and the sink accordingly. For
the connected part, we used low mode averaging [23,24].
We describe the details of these calculations in Appendix B.
We solve the following generalized eigenvalue problem:

hC2 ptðt0; pÞi−1
2hC2 ptðt; pÞivαðt; pÞ

¼ λαðt; pÞhC2 ptðt0; pÞi12vαðt; pÞ; ð5Þ

where λαðt; pÞ (α ¼ η; η0) is the generalized eigenvalue and
vαðt; pÞ is the generalized eigenvector. The time slice t0 can
be varied to minimize the excited state contributions to λα
and vα. We tried t0=a ¼ 1–3 and found no significant
difference in the results, so we use t0=a ¼ 1 which gives
the largest range of t > t0. We parametrize the eigenvectors
of the two-dimensional system in the following way:

vηðt; pÞ ¼ ðcos θðt; pÞ;− sin θðt; pÞÞT;
vη0 ðt; pÞ ¼ ðsin θ0ðt; pÞ; cos θ0ðt; pÞÞT: ð6Þ

Note that in general θ ≠ θ0. In the large t limit, the ground
state dominates, vηð0Þ ðt; pÞ → vηð0Þ ðpÞ and we can obtain the
interpolators for the physical ground states,

Oη ¼ cos θðpÞO8 − sin θðpÞO1;

Oη0 ¼ sin θ0ðpÞO8 þ cos θ0ðpÞO1: ð7Þ

It is sufficient to extract sin θ and sin θ0. This was done by
fitting the corresponding components of vαðt; pÞ to a
constant, taking into account correlations including those
between sin θ and sin θ0 and those between different time
slices. Using Eq. (7), we can construct the two-point
functions of the physical states for each p,

hCη
2 ptðt; pÞi ¼ hOηðt; pÞOηð0Þi;

hCη0
2 ptðt; pÞi ¼ hOη0 ðt; pÞOη0 ð0Þi: ð8Þ

The energy of the state α at a momentum p, EαðpÞ, can then
be obtained by fitting these two-point functions at suffi-
ciently large times t to the functional form

hCα
2 ptðt; pÞi ¼ AαðpÞðexp½−tEαðpÞ�

þ exp½−ðT − tÞEαðpÞ�Þ; ð9Þ

where T is the temporal lattice extent, and AαðpÞ is a
(momentum-dependent) amplitude.
At zero momentum the situation is more involved and we

deviate from the above procedure; see Sec. III B. For the η0
mass on Set A and Set S and the η mass on Set A, the
statistical error ofMα ¼ Eαð0Þ could be further reduced by

2We always use h·i for expectation values so that the
correlation functions without h·i like C1 ptðp; tÞ and C2 ptðp; tÞ
denote configuration by configuration quantities.
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fitting zero- and nonzero-momentum data to the lattice
dispersion relation

2 coshðaEðpÞÞ ¼ 2 coshðaMÞ þ
X3
i¼1

4sin2
api

2
; ð10Þ

where the mass, aM, is a free parameter. This is illustrated
in Fig. 2, where the energies we obtained directly at zero
and at finite momenta, and the fitted dispersion relations
and their results are shown. The masses are listed in
Table II, and the energies at zero and finite momenta in
Tables VII and VIII of Appendix D. The η meson at the
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FIG. 2 (color online). Energies EðpÞ along with fitted lattice and continuum dispersion relations of the η0 (top), η (middle) and Ds
(bottom) mesons atMπ ≈ 370 MeV (Set A, left) and at the SU(3) flavor symmetric pointMπ ≈ 470 MeV (Set S, right). The momentum
P ¼ p × L=ð2πÞ is in lattice units. Open circles were excluded from the fits. Eðp ¼ 0Þ for η (Set A) and η0 (Sets A, S) were obtained by
using the improved method explained in Sec. III B. For clarity, the different mass determinations are replotted at P2 ¼ 0 with a slight
horizontal shift.

BALI et al. PHYSICAL REVIEW D 91, 014503 (2015)

014503-4



SU(3) flavor symmetric point (Set S) is identical to the pion
(and the kaon) and the precision of its mass did not benefit
from including nonzero momentum data. In this case we
display the p ¼ 0 result in the table. No significant
differences were found for the η and η0 masses if the
continuum dispersion relation E2 ¼ M2 þ p2 was used
instead, as seen in the figure. For comparison, we also
show the Ds data in the figure. For this meson, the lattice
dispersion relation is clearly preferred by the data: the χ2

values, normalized with respect to the degrees of freedom,
χ2=d:o:f:, were poor (4.7 for Set S and 2.2 for Set A) and
did not reproduce the data. In Fig. 2, uncorrelated fits are
shown in these cases.
In Fig. 3, we plot the effective masses of the η, the η0 and

the π. The fitted η and η0 masses, with the exception of
the η ¼ η8 ¼ π at the SU(3) symmetric point, were
obtained using the improved method detailed in the next
subsection. The masses are Mη ¼ 470.5ð1.8Þ MeV and
Mη0 ¼ 1032ð27Þ MeV for Set S (Mπ ≈ 470 MeV), Mη ¼
542.8ð6.2Þ MeV and Mη0 ¼ 946ð65Þ MeV for Set A
(Mπ ≈ 370 MeV), where the errors are statistical only.
These values are consistent with the finite momentum data
shown in Fig. 2.
In Fig. 4 we compare our η and η0 masses to results

obtained by other lattice collaborations [25–28] and the
respective experimental values [29]. In some of these
studies the extrapolation to the physical point was per-
formed, however, for consistency we do not show extrapo-
lated values. Note that, since the flavor singlet quark mass
average is kept fixed in our simulations, the mass of the η
approaches the physical point from below. Our results seem

to approach the experimental values, and the η0 masses are
consistent with other lattice determinations that were
obtained keeping the strange quark mass approximately
constant.

B. Finite volume effects on the η and η0 masses

Analyzing Set S we found that the η0ð¼ η1Þ two-point
function at large times t does not decay to zero [cf. Eq. (9)]
but instead saturates at a small nonzero value. This
phenomenon can be explained as a finite volume effect,
coupled to unrealistic fluctuations of the topological
charge, due to an insufficient sampling of the topological
sectors within our limited statistics. Wewill see that this can
be cured by defining an improved observable which also
reduces the variance of disconnected pseudoscalar two-
point functions in the case of a correctly sampled topo-
logical charge.
The disconnected contributions can be obtained by

correlating pairs of momentum-projected “1-point loops.”
The sum over such a one-point loop is proportional to the
fermionic definition of the topological charge Qf,X

t

C1 ptðt; p ¼ 0Þ ¼
X
t

X
x

C1 ptðt; xÞ ¼ αQf ≈ αQ;

ð11Þ

where the (dimensionless) proportionality constant α will
depend on the quark mass, the smearing function and the
normalization of the interpolator, and we assume the
fermionic and gluonic definitions of the topological
charge to agree Q ≈Qf. The above relation suggests an
approximate proportionality between the topological
charge density and the fermionic one-point loop: ρðt; xÞ≃
C1 ptðt; xÞ=ðαa4Þ.
If the topological charge is fixed to Q, point-point

correlators of the topological charge density ρðxÞ will
remain finite for large separations jxj [30],

TABLE II. Masses of the η and the η0 mesons. The errors are
statistical only.

Set Mη [MeV] Mη0 [MeV]

S 470.5 (1.8) 1032 (27)
A 542.8 (6.2) 946 (65)
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FIG. 3 (color online). Effective masses of the π, η and η0 for (left)Mπ ≈ 370 MeV (Set A) and (right)Mπ ≈ 470 MeV (Set S). Note that
for Set S π ¼ η ¼ η8 and η0 ¼ η1.
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hρðxÞρð0ÞiQ →
1

V4

�
Q2

V4

− χt −
c4

2χtV4

�
þ � � � ; ð12Þ

where V4 is the physical four-volume, χt is the topological
susceptibility, and the dimensionful kurtosis c4 parametr-
izes the leading deviations from Gaussian fluctuations ofQ.

Projecting the above expression onto a fixed spatial
momentum, the constant term only affects the p ¼ 0 case.
Using ρðxÞ≃ C1 ptðxÞ=ðαa4Þ, we obtain the following

estimate of the η0 two-point function, which is the singlet
two-point function [see Eq. (B2)] in the SU(3) flavor
symmetric case:

Cη0
2 ptðt; p ¼ 0Þ ¼ Cconnðt; p ¼ 0Þ − 3

a4

V4

XT=a−1
t0=a¼0

C1 ptðtþ t0; p ¼ 0ÞC1 ptðt0; p ¼ 0Þ

¼ Cconnðt; p ¼ 0Þ − 3
α2a12

V4

XT=a−1
t0=a¼0

X
x;x0

ρðtþ t0; xÞρðt0; x0Þ: ð13Þ

Here Cconn. is the quark-line connected part of the two-
point function and T is the temporal extent of the lattice. By
using Eq. (12) and the observation that c4 is negligible for
our ensembles, we obtain

hCη0
2 ptðt; p ¼ 0ÞiQ →

3α2a5

T

�
χt −

Q2

V4

�
ð14Þ

for large t, resulting in the prediction for the finite volume
effect at jQj ¼ 0,

hCη0
2 ptðt; p ¼ 0ÞiQ¼0 →

3α2a5χt
T

ðml ¼ msÞ: ð15Þ

For the non-SU(3) flavor symmetric case, in principle, both
the singlet and the octet parts of the η0 two-point function
should contribute to the constant. However, using only the
singlet part gives a good approximation because sin θ0 in

Eq. (7) is small. The singlet-to-singlet contribution to the η0
two-point function is

hCη0
2 ptðt; pÞi ¼ cos2θ0hO1ðt; pÞO†

1ð0Þi þ � � � ; ð16Þ

and we obtain

hCη0
2 ptðt; p ¼ 0ÞiQ¼0 → cos2θ0

3α2a5χt
T

ðml ≠ msÞ;
ð17Þ

where we used a flavor-averaged proportionality constant3

X
t

1

3
½2Cl

1 ptðt; p ¼ 0Þ þ Cs
1 ptðt; p ¼ 0Þ� ¼ αQ: ð18Þ

To check Eq. (14), we measured Q using an improved
field strength tensor [31] on smeared gauge fields with 90
iterations of Stout [32] smearing. The measured values
clustered around integer values as expected. For each
integer n ≥ 0, using configurations with n − 0.5 ≤ jQj <
nþ 0.5 only (we denote them as jQj ¼ n configurations),
we calculated the two-point function of the η0 at zero
momentum. The values of the two-point functions in the
large time limit exhibit a clear dependence on jQj; see
Fig. 5. Moreover, the constants obtained by fitting within
such subsets are consistent with the linear dependence on
Q2 suggested by Eq. (14); see Fig. 6. See Ref. [33] for an
earlier observation of the jQj dependence of the η0 effective
mass, Ref. [34] for the general argument and Ref. [35] for a
fixed topology approach.
In Fig. 6, we also plot theQ ¼ 0 predictions. These were

obtained from Eq. (15) (Set S) and Eq. (17) (Set A). The
topological susceptibilities χt ¼ hQ2i=V4 were computed
using the gluonic definition of the topological charge and
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FIG. 4 (color online). Summary plot of recent lattice determi-
nations of the η (open symbols) and η0 (solid symbols) masses.
Results are shown from the RBC/UKQCD (2010, [25]), UKQCD
(2011, [26]), HSC (2011, [27]), and ETMC (2013, [28])
Collaborations. The experimental values are taken from the
Particle Data Group [29].

3For each flavor a ¼ l; s, we have
P

tC
a
1 ptðt; p ¼ 0Þ ¼ αaQ,

where the proportionality constant depends on the flavor through
the quark mass. α in Eq. (18) can be written as α ¼ ð2αl þ αsÞ=3.
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the parameters α were obtained by fitting the one-point
loops as a function of the gluonic topological chargeQ as in
Eq. (18). For Set A we find consistency between the linear
extrapolation and this Q ¼ 0 prediction. On Set S, how-
ever, the prediction is significantly smaller than the
extrapolated value, and also smaller than the measured
values. At the same time the η0 two-point function,
averaged over all configurations, approaches a nonzero
(positive) value. The linear fit of the constant part versusQ2

crosses zero at a value hQ2i ≈ 13. Replacing the measured
value χt ¼ hQ2i=V4 ¼ 9.1ð0.4Þ=V4 within Eq. (15) by
13=V4, the prediction would be compatible with the fixed
topology measurements. These observations are coherent
with our above arguments and strongly suggest hQ2i on Set
S to be underestimated, due to an insufficient sampling.
While the distribution of Q on Set S is too narrow, we

find hQi ¼ 0 within errors on both ensembles. Therefore,
replacingC1 pt ↦ C1 pt − hC1 ptiwithin the above two-point

functions will not affect any expectation value or correct for
the sampling of topological sectors in Set S. Nevertheless,
we checked whether this procedure reduced the statistical
noise, but we did not find any improvement.
One way of addressing the problem of a nonvanishing

expectation value of the two-point function at large
Euclidean times is simply to fit the correlation function
to a constant plus an exponential decay (which we denote
as “naive fit with a constant”). We adopted, however, a
different strategy that we found to reduce the gauge noise:
this is motivated by the results in Fig. 6, which suggest that
the two-point functions are shifted by different values in
different topological sectors according to Eq. (14).
Therefore, normalizing the result to the Q ¼ 0 sector
may reduce the gauge fluctuations. We first add a term
that cancels the Q2 dependence of Eq. (12), and then fit the
result to a constant plus an exponential decay (denoted as
the “improved method”).
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FIG. 5 (color online). The naive zero-momentum η0 two-point function for each topological sector, for Set A (left panel) and Set S
(right panel).
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FIG. 6 (color online). The constant part of the naive zero-momentum η0 two-point function for each topological sector, for Set A (left
panel) and Set S (right panel). The green solid circles were obtained using all configurations. We found hQ2i ≈ 7.7 for Set A and
hQ2i ≈ 9.1 for Set S. The Q ¼ 0 finite volume predictions [blue crosses, Eqs. (17) and (15)] were calculated using χt ¼ hQ2i=V4 and
slopes α, determined via Eq. (18). The dashed pink lines are linear fits to the fixed jQj data.
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The details of the improved method are as follows.
Noting that the Q2 term in Eq. (14) comes from the
disconnected part of the two-point function, we replace
this contribution to the two-point function DabðtÞ [see
Eq. (B5) of Appendix B] by

DabðtÞ ¼
a4

V4

XT=a−1
t0=a¼0

Ca
1 ptðtþ t0ÞCb

1 ptðt0Þ ↦ ~DabðtÞ

≡DabðtÞ −
a5

V4T

XT=a−1
t1=a;t2=a¼0

Ca
1 ptðt1ÞCb

1 ptðt2Þ; ð19Þ

where p ¼ 0 is understood. We perform this subtraction
on a configuration by configuration basis, shifting the
correlator on different configurations by different values.
This results in a “wrong” expectation value of D (and

thus of Cη0
2 pt) but the subtraction does not affect its t

dependence. The resulting two-point function should
approximately reproduce the behavior Eqs. (15) and
(17) of the Q ¼ 0 sector. Note that the cancellation
cannot be perfect since, instead of subtracting
hPtC1 ptðtÞi2Q within each fixed topology sector, in

Eq. (19) we subtract h½PtC1 ptðtÞ�2i, thereby neglecting
fluctuations of

P
tC1 ptðtÞ about αQ.

We remark that even on ensembles with the correct
distribution of the topological charge we recommend to
subtract this constant term from D, (approximately) nor-
malizing this to the Q ¼ 0 behavior, Eqs. (15) and (17),
since this construction, as we will see below, significantly
improves the signal over noise ratio.
Replacing DabðtÞ with ~DabðtÞ in Cij

2 ptðtÞ, i; j ¼ 1; 8, as
advertised above, we obtain modified two-point functions
~Cij
2 ptðtÞ [see Eqs. (B1)–(B4)],

~C88
2 pt ¼

1

3
ðCll þ Css − 2 ~Dll − 2 ~Dss þ 2 ~Dls þ 2 ~DslÞ; ð20Þ

~C11
2 pt ¼

1

3
ð2Cll þ Css − 4 ~Dll − ~Dss − 2 ~Dls − 2 ~DslÞ; ð21Þ

~C18
2 pt ¼ ð ~C81

2 ptðtÞÞ�

¼
ffiffiffi
2

p

3
ðCll − Css − 2 ~Dll þ ~Dss þ 2 ~Dls − ~DslÞ; ð22Þ

where Cab is a connected two-point function with flavor
a; b ¼ l; s and we have suppressed the t dependence. Each
modified two-point function still approximately reproduces
the constant term Eq. (15). Solving the generalized eigen-
value problem, we obtain eigenvectors ðcos ~θ;− sin ~θÞT and
ðsin ~θ0; cos ~θ0ÞT . It is convenient to write the two-point
functions in matrix notation,

 h ~Cη
2 ptðtÞi 0

0 h ~Cη0
2 ptðtÞi

!

¼ Uð~θ; ~θ0Þ
 h ~C88

2 ptðtÞi h ~C81
2 ptðtÞi

h ~C18
2 ptðtÞi h ~C11

2 ptðtÞi

!
UTð~θ; ~θ0Þ; ð23Þ

where

Uð~θ; ~θ0Þ≡
�
cos ~θ − sin ~θ

sin ~θ0 cos ~θ0

�
: ð24Þ

The modified two-point functions of the physical inter-
polators at large times behave as

h ~Cη
2 ptðtÞi ¼ Aηðexp½−Eηt� þ exp½−EηðT − tÞ�Þ þ βη; ð25Þ

h ~Cη0
2 ptðtÞi ¼ Aη0 ðexp½−Eη0 t� þ exp½−Eη0 ðT − tÞ�Þ þ βη0 :

ð26Þ

From this we can obtain the constants βη and βη0 . At the SU

(3) symmetric point, where ~θ ¼ ~θ0 ¼ 0, we obtain the mass
of the η0 from Eq. (26) alone. In this case η ¼ η8 does not
contain disconnected contributions and βη ¼ 0.
At the flavor nonsymmetric point, the removal of the

constant part is more involved. By inverting Eq. (23) we
can obtain the contributions to βη and βη0 from the two-
point functions in the octet-singlet basis. We define
improved two-point functions for p ¼ 0, subtracting these:

 hC88
2 ptðtÞi hC81

2 ptðtÞi
hC18

2 ptðtÞi hC11
2 ptðtÞi

!
improved

¼
 
h ~C88

2 ptðtÞi h ~C81
2 ptðtÞi

h ~C18
2 ptðtÞi h ~C11

2 ptðtÞi

!

−U−1ð~θ; ~θ0Þ
�
βη 0

0 βη0

�
ðU−1ÞTð~θ; ~θ0Þ: ð27Þ

Solving the generalized eigenvalue problem for the
improved two-point functions, we then obtain the masses
and improved θ and θ0 angles that we will use to construct
the physical interpolators at p ¼ 0.
The effective masses of the η0 before and after the

improvement are plotted in Fig. 7 for the two ensembles.
The results obtained from the naive fit with a constant are
also shown. For very large statistics there should be no
difference between the naive effective mass and the other
two definitions; however, as we have already discussed
above, Set S showed a nonrealistic distribution of the
topological charge. The improved method gives the best
signals and shows clear plateaus.
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The method we presented here was motivated by the
inadequate sampling of the topological charge on one of
our ensembles. However, it is generally applicable to
calculations of disconnected contributions to light pseudo-
scalar two-point functions. The improved two-point func-
tions show reduced fluctuations, at the price of a constant
term that needs to be fitted. In spite of this additional
parameter, the extracted masses are more precise than they
are using the naive approach.

C. Mixing of the η and η0 mesons in the
octet-singlet basis

In addition to the mass, the mixing angles between the
physical η0 and η states and the octet-singlet basis are also
of phenomenological importance. We restrict ourselves to
Set A since at the SU(3) flavor symmetric point (Set S)
there is no such mixing and η0 ¼ η1, η ¼ η8 ¼ π. We define
the two leading distribution amplitudes

Ajηð0Þ ≡ h0jOlocal
j jηð0Þi; ð28Þ

where Olocal
j is a local singlet (j ¼ 1) or octet (j ¼ 8)

interpolator projected onto zero momentum, and use the
following parametrizations for which the renormalization
factors of Olocal

j cancel [26] (see also [36] and references
therein4):

A8η0

A8η
¼ tan θ8;

A1η

A1η0
¼ − tan θ1; tan2θ̄ ¼ tan θ8 tan θ1:

ð29Þ

To obtain these amplitudes, we use the asymptotic behavior
at large times t of smeared source to local (point) sink two-
point functions at zero momentum5

hCjηð0Þ
2 pt;sm→ptðtÞi ¼ h0jOlocal

j ðtÞO†
ηð0Þ
ð0Þj0i → Ajηð0ÞZηð0Þ

2Mηð0Þ

× ðexp½−Mηð0Þt� þ exp½−Mηð0Þ ðT − tÞ�Þ
þ βjηð0Þ ; ð30Þ

where Zηð0Þ ¼ hηð0ÞjO†
ηð0Þ
j0i [see Eq. (36) below] can be

obtained from the smeared-smeared two-point function.
The physical η or η0 state is created by O†

ηð0Þ
, for which we

use the improved θ or θ0 parameters obtained from the
smeared-smeared correlators in the previous subsection.
Note that these angles depend on our choice of smearing
and—unlike the mixing angles discussed below—are not
properties of the physical states alone. Using the mixing
angles θ and θ0 we build the improved two point functions

h ~Cjη
2 pt;sm→ptðtÞi ¼ cos θh ~Cj8

2 pt;sm→ptðtÞi
− sin θh ~Cj1

2 pt;sm→ptðtÞi; ð31Þ

h ~Cjη0
2 pt;sm→ptðtÞi ¼ sin θ0h ~Cj8

2 pt;sm→ptðtÞi
þ cos θ0h ~Cj1

2 pt;sm→ptðtÞi: ð32Þ

Both sides of the above equations may contain constant
contributions, due to the replacement C ↦ ~C coming from
the improved method.
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FIG. 7 (color online). Effective mass of the η0, before and after the improvement, for Set A (left panel) and Set S (right panel). Results

are shown for three cases (a) using the naive η0 two-point correlators, Cηð0Þ
2 pt, of Eq. (8) (blue squares), (b) using the naive correlators after

removing the constant term (green diamonds) and (c) using the improved two-point functions, removing the constant part Eq. (26) for
Set S, and solving the generalized eigenvalue problem for Eq. (27) for Set A (red triangles).

4Note that in Ref. [36], decay constants fjηð0Þ are used instead
of the Ajηð0Þ , which are defined as h0jAμ

j jηð0Þi ¼ ipμfjηð0Þ with axial
octet and singlet currents Aμ

j .

5Note that we use the improved method outlined in the
previous subsection, Eqs. (20)–(22), replacing the disconnected
contribution as in Eq. (19), this time also for smeared-point two-
point functions. Therefore, we have to allow for constant
contributions that we denote as βjηð0Þ .

Ds → η; η0 SEMILEPTONIC DECAY … PHYSICAL REVIEW D 91, 014503 (2015)

014503-9



We fit h ~Cjηð0Þ
2 pt;sm→ptðtÞi, fixing the mass Mηð0Þ to the value

we determined previously, leaving Ajηð0Þ and βjηð0Þ as free

parameters. The resulting angles θ1, θ8 and θ̄ [see Eq. (29)]
are given in Table III. The first error is statistical, while the
second one is an estimate of the systematics from the choice
of the fit range and was obtained varying this by �1 time
slices. Note that, since both tan θ8 and tan θ1 are negative,
we also adopted a negative value for tan θ̄. θ8 was found to
differ from θ1 (and hence from θ̄): two angles are needed to
connect the physical states to the octet-singlet basis,
indicating the relevance of higher Fock states. A phenom-
enological estimate used in Ref. [36] also gives two mixing
angles, θ8 ¼ −21.2ð1.6Þ∘ and θ1 ¼ −9.2ð1.7Þ∘, where the
errors are solely experimental and no systematic errors are
included. In the lattice study of Ref. [25] a single mixing
angle −14.1ð2.8Þ∘ was obtained, relative to the octet-singlet
basis, after extrapolating to the physical point. This is in the
middle between the phenomenological θ1 and θ8 values.
The ratio θ8=θ1 of Ref. [36] is consistent with our result;
however, both our angles come out a factor of 2 smaller
than in that analysis. This is not surprising since we start
from the flavor-symmetric point where θ8 ¼ θ1 ¼ 0, while
Set A corresponds to a quark mass ratio ms=ml ≈ 2.8, still
quite far away from the physical point ms=ml ≈ 25. A
monotonous extrapolation would indeed suggest larger
values of jθjj for physical ms=ml.
Another interesting combination is ratios of the Ajηð0Þ

amplitudes to a similar distribution amplitude for the pion

Ajηð0Þ

Aπ
with Aπ ≡ h0jOlocal

π jπi; ð33Þ

where Olocal
π is the local pion interpolator. Note that the

renormalization factors only cancel exactly for the ratios

A8ηð0Þ=Aπ while in the singlet case this is violated at two-
loop order in perturbation theory. In Table IV, we list the
values (in the left column). The octet component of the η
meson is enhanced, relative to the flavor-symmetric case
while the singlet η0 distribution amplitude is much smaller
than that for the pion. Note that the negative value of A8η0

signals an octet-admixture to η0 much bigger than the
singlet component of η, which is another manifestation of
the result jθ8j > jθ1j.
For completeness, we also determined the angles and

ratios using the (unimproved) hCjηð0Þ
2 pt;sm→ptðtÞi with both

βjηð0Þ ¼ 0 and βjηð0Þ ≠ 0 in the fit function. The results are
included in Tables III and IV for comparison. The three
determinations are broadly consistent for both quantities.
We see no significant reduction in the statistical errors
between the unimproved/improved βjηð0Þ ≠ 0 cases. This
may be due to the use of the same (improved) θ and θ0 to
construct the physical states or that the assumption of small
fluctuations of

P
tC1ptðtÞ around the topological charge

[see the argument below Eq. (19)] may be less valid for the
local one-point loop. The naive (unimproved βjηð0Þ ¼ 0)
errors are slightly smaller since the fit parameters βjηð0Þ are
fixed. The discussion of the previous subsection, however,
suggests that due to the coupling between the disconnected
loop and the slowly moving topological charge it is safer to
allow for such constants.

IV. DETERMINATION OF THE SEMILEPTONIC
FORM FACTORS

Having obtained the η and η0 interpolators, we are now in
the position to calculate the Ds → ηlν̄l and Ds → η0lν̄l
semileptonic decay form factors f0ðq2Þ. We discuss the
relevant matrix elements and our methods to compute these,
before we present and discuss our results on the form factors.

TABLE IV. The distribution amplitudes for Set A normalized with respect to Aπ , using the three different methods.
The (unknown) renormalization factor exactly cancels from the octet ratios and is partially canceled in the singlet
ratios.

Improved, βjηð0Þ ≠ 0 Unimproved, βjηð0Þ ≠ 0 Unimproved, βjηð0Þ ¼ 0

A8η=Aπ 1.124ð14Þstatð04Þfit 1.124ð14Þstatð04Þfit 1.120ð14Þstatð03Þfit
A1η=Aπ 0.058ð24Þstatð12Þfit 0.058ð24Þstatð12Þfit 0.082ð19Þstatð08Þfit
A8η0=Aπ −0.216ð31Þstatð11Þfit −0.216ð31Þstatð11Þfit −0.207ð22Þstatð39Þfit
A1η0=Aπ 0.60ð13Þstatð20Þfit 0.60ð13Þstatð21Þfit 0.65ð12Þstatð17Þfit

TABLE III. The mixing angles θ8, θ1 and θ̄ in degrees for Set A. The improved and unimproved values were

obtained using ~Cjηð0Þ
2pt;sm→ptðtÞ and Cjηð0Þ

2pt;sm→ptðtÞ, respectively. The first errors are statistical and the second quantify the
uncertainty from the choice of the fit range.

Improved, βjηð0Þ ≠ 0 Unimproved, βjηð0Þ ≠ 0 Unimproved, βjηð0Þ ¼ 0

θ8 −10.9ð1.5Þstatð0.5Þfit −10.9ð1.5Þstatð0.4Þfit −10.5ð1.1Þstatð0.2Þfit
θ1 −5.5ð1.5Þstatð1.2Þfit −5.5ð1.5Þstatð1.2Þfit −7.1ð1.2Þstatð1.3Þfit
θ̄ −7.7ð0.9Þstatð0.8Þfit −7.7ð0.9Þstatð0.7Þfit −8.6ð0.9Þstatð0.9Þfit
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A. Matrix elements

The matrix elements needed to study the decays
Ds → ηð0Þlν̄l are obtained from the following three-point
functions:

hCDs→ηð0Þ
3pt ðt; p; k; tsepÞi¼ h0jOηð0Þðk; tsepÞSð0; tÞO†

Ds
ðp; 0Þj0i;

ð34Þ

where we used smeared interpolatorsODs
andOηð0Þ for both

theDs and the ηð0Þ, respectively. S is the local scalar current
in position space. It can also be averaged over the spatial

volume (multiplying by the phases eiq·ðx−x0Þ), to increase
statistics. We detail the computation methods for both the
connected and the disconnected contributions to the three-
point functions in Appendix C. Figure 8 shows the full
three-point function and the contributions from connected
and disconnected fermion loop diagrams. It is interesting to
note that the magnitude of the disconnected contributions is
large, especially for the decay to η0. Not surprisingly, the
statistical error of the three-point function mainly comes
from the disconnected part.
The three-point functions have the following spectral

decomposition:

hCDs→ηð0Þ
3pt ðt; p; k; tsepÞi ¼

Zηð0Þ

2Eηð0Þ

ZDs

2EDs

hηð0ÞðkÞjSð0ÞjDsðpÞi exp ½−EDs
ðT − tÞ − Eηð0Þ ðT − ðtsep − tÞÞ�

þ Zηð0Þ�

2Eηð0Þ�

ZDs

2EDs

hηð0Þ�ðkÞjSð0ÞjDsðpÞi exp ½−EDs
ðT − tÞ − Eηð0Þ� ðT − ðtsep − tÞÞ�

þ Zηð0Þ

2Eηð0Þ

ZD�
s

2ED�
s

hηð0ÞðkÞjSð0ÞjD�
sðpÞi exp ½−ED�

s
ðT − tÞ − Eηð0Þ ðT − ðtsep − tÞÞ�

þ Zηð0Þ�

2Eηð0Þ�

ZD�
s

2ED�
s

hηð0Þ�ðkÞjSð0ÞjD�
sðpÞi exp ½−ED�

s
ðT − tÞ − Eηð0Þ� ðT − ðtsep − tÞÞ� þ � � � ; ð35Þ

where � indicates the first excited states and we have
neglected contributions from even higher excitations. ZXð�Þ

is the amplitude of the state with X ¼ Ds, η and η0. For
brevity we suppress the momentum dependence of ZXð�Þ ¼
ZXð�Þ ðpÞ and EXð�Þ ¼ EXð�Þ ðpÞ. The first term on the right-
hand side contains the ground state to ground state matrix
element that we are interested in.
Note that the phase of the state X is arbitrary and we

choose it such that we have a real positive amplitude

ZX ¼ hXjO†
Xj0i > 0: ð36Þ

This means that the matrix elements hDsðpÞjSð0Þjηð0ÞðkÞi
can be negative6 and, indeed, we obtained negative values
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FIG. 8 (color online). Connected (green squares) and disconnected (blue triangles) contributions to the total three-point functions (red
circles) forDs → η (left panel) andDs → η0 (right panel) matrix elements for Set Awith tsep ¼ 8a. TheDs is located at t ¼ 0 and the ηð0Þ

is at t ¼ 8a. The momenta are in the lattice units: ðP;Q;KÞ ¼ ðp; q; kÞ × L=ð2πÞ.

6Charge conjugation invariance guarantees the matrix
element is real in coordinate space, and then parity invariance
hDsðpÞjSð0Þjηð0ÞðkÞi ¼ hDsð−pÞjSð0Þjηð0Þð−kÞi gives a real
three-point function in momentum space.
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for the η. Since the sign of the matrix element is not
physical, in the following we use its modulus.7

In order to determine the ground state to ground
state matrix element reliably, it is important to take
into account the excited state contributions to the
three-point function. One way to do this is to use a
large sink-source separation so that the excited state

contributions are small. However, this is not possible in
the current case because the statistical error grows
rapidly (due to the disconnected terms), even for
relatively small time separations. We need to employ
an alternative approach.
First we obtain EX and ZX by fitting the two-point

function

hC2pt
X ðp; tÞi ¼ jZXj2

2EX
ðexp½−EXt� þ exp½−EXðT − tÞ�Þ þ jZX� j2

2EX�
ðexp½−EX�t� þ exp½−EX�ðT − tÞ�Þ þ � � � ; ð37Þ

using a functional form given by the first term, at sufficiently large t. The energy gap, ΔEX ¼ EX� − EX, is then determined
by fitting the combination

hC2pt
X ðt; pÞi

jZX j2
2EX

ðexp½−EXt� þ exp½−EXðT − tÞ�Þ
− 1 ð38Þ

to the form aX expð−ΔEXtÞ, where not only ΔEX but also the amplitudes aX depend on the momentum p. To extract the
matrix element, hηð0ÞðkÞjSð0ÞjDsðpÞi, we compute the ratio

RðtÞ ¼ hCDs→ηð0Þ
3pt ðt; p; k; tsepÞi

ZDs
2EDs

ðexp ½−EDs
t� þ exp ½−EDs

ðT − tÞ�Þ Z
ηð0Þ

2E
ηð0Þ

ðexp ½−Eηð0Þ ðtsep − tÞ� þ exp ½−Eηð0Þ ðT − ðtsep − tÞÞ�Þ
ð39Þ

and use the fit function

RðtÞ ¼ cþ A1 exp ½−ΔEDs
t� þ A2 exp ½−ΔEηð0Þ ðtsep − tÞ�;

ð40Þ

where c ¼ hηð0ÞðkÞjSð0ÞjDsðpÞi. Whenever the two-point
function had a small overlap with the excited state and we
were unable to extract ΔEηð0Þ , we only employed the first
two terms of Eq. (40).
We generated three different data sets with tsep=a ¼

8; 10; 16 and fitted these simultaneously. For the η at the
SU(3) flavor symmetric point, which has no disconnected
contributions, we also generated tsep=a ¼ 24 data. For
some momentum combinations only a subset of the
available data was used in the fits, either because of the
data being too noisy (for tsep=a ¼ 24) or because contri-
butions from the second or higher excited states were
significant (for tsep=a ¼ 8). Details of the chosen fit ranges
are listed in Tables IX–XII of Appendix D and typical
examples of the fits using Eq. (40) are shown in Fig. 9.
Again, we used correlated fits and varied the fit region to

assess systematic uncertainties. The changes of the fit

parameter values were found to be well within the statistical
errors. The only exception was for the three-point function
involving the η meson at the SU(3) flavor symmetric point.
In this case, the statistical errors were small such that the
systematic uncertainties became relevant and we opted for
employing an uncorrelated fit and a fit range that resulted in
errors large enough to encompass the systematics.

B. Results

The results for the form factor, derived from the
matrix elements using Eq. (2), are listed in Tables IX–XII
for the momentum ranges P2 ≤ 4 and K2 ≤ 3 in lattice
units [P ¼ p × L=ð2πÞ]. Note that we defined the four-
momentum transfer q2 as

q2 ≡ ðEDs
ðpÞ − Eηð0Þ ðkÞÞ2 − ðp − kÞ2; ð41Þ

where the energies of the Ds and ηð0Þ states are listed in
Tables VII and VIII of Appendix D and depicted in Fig. 2.
The values at nonzero momenta were determined directly,
without using a dispersion relation. The dependence of
f0ðq2Þ on q2 is shown in Fig. 10.
We used a one pole ansatz to interpolate the data to

q2 ¼ 0,

f0ðq2Þ ¼
f0ð0Þ
1 − bq2

: ð42Þ

7Note, however, that relative signs are relevant for studies of
flavor mixing angles in decays. This is similar to the connection
of the sign of the distribution amplitude ratio A8η0=Aπ to the sign
of the respective mixing angle θ8.
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FIG. 10 (color online). The scalar form factor f0ðq2Þ for Ds → ηð0Þlν̄l. The errors are statistical only and the dashed lines indicate the
fits to the form factors using the parametrization f0ðq2Þ ¼ f0ð0Þ=ð1 − bq2Þ. On the left are the results for Mπ ≈ 370 MeV (Set A) and
on the right for Mπ ≈ 470 MeV (Set S).
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FIG. 9 (color online). Typical examples of fitting RðtÞ to Eq. (40), to extract hηð0ÞðkÞjSð0ÞjDsðpÞi, for Set A. The lower right plot
depicts a fit to the first two terms of Eq. (40), while the others use all three terms. TheDs meson is always located at t=a ¼ 16, while the
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from the fits. The red bands indicate the values of the matrix elements obtained from the fit. The momenta are in the lattice units:
ðP;Q;KÞ ¼ ðp; q; kÞ × L=ð2πÞ.

Ds → η; η0 SEMILEPTONIC DECAY … PHYSICAL REVIEW D 91, 014503 (2015)

014503-13



These curves are also shown in Fig. 10. The resulting
values for f0ð0Þ are listed in Table V. The parametrization
of Becirević and Kaidalov (BK) [37] is frequently used in
the literature too. For the scalar form factor, this is
essentially the same parametrization as Eq. (42) but the
location of the pole is normalized with respect to the vector
meson mass MD�

s
,8

f0ðq2Þ ¼
f0ð0Þ
1 − x=β

ð43Þ

with x ¼ q2=M2
D�

s
. The values of β obtained from rescaling

the parameter b above are also listed in Table V.
A comparison can be made with the values derived from

light cone QCD sum rules (LCSRs) [4], displayed in
Table V, where we assumed fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ.
Encouragingly, the results are broadly consistent. We find
f0ðq2 ¼ 0Þ is larger for the η than for the η0, indepen-
dent of the quark mass, while for LCSRs the ordering
cannot be resolved due to the large error for the η0.
The ratios of the form factors jfDs→η0

þ ð0Þj=jfDs→η
þ ð0Þj ¼

jfDs→η0
0 ð0Þj=jfDs→η

0 ð0Þj are
0.775ð032Þ ðSet SÞ; 0.746ð046Þ ðSet AÞ;
1.20ð17Þ ðLCSRsÞ: ð44Þ
Amore detailed comparison would require an estimation of
the dominant systematic uncertainties. These uncertainties
are difficult to quantify in both studies, in the LCSRs case
due to the approximations made, while in our study since
we have a single lattice volume and lattice spacing.
Considering our lightest pseudoscalar mass is around
370 MeVand LMπ ¼ 3.3, extending the analysis to bigger
volumes and smaller quark masses is important.

C. Outlook on phenomenology

The results given in the previous subsection do not allow
for a direct determination of the widths ΓðD−

s → ηe−ν̄eÞ

and ΓðD−
s → η0e−ν̄eÞ, since we computed f0ðq2Þ rather

than fþðq2Þ and used heavier-than-physical pion masses.
Accordingly, a direct comparison to, for example, the ratio
ΓðD−

s → η0e−ν̄eÞ=ΓðD−
s → ηe−ν̄eÞ ¼ 0.36ð14Þ, as deter-

mined by the CLEO Collaboration [6], is not yet possible.
However, invoking some model assumptions, a tentative
comparison can be made, albeit at the price of introducing
an essentially unquantifiable uncertainty.
We calculate the ratio

ΓðD−
s → η0e−ν̄eÞ

ΓðD−
s → ηe−ν̄eÞ

¼
R ðMDs−Mη0 Þ2
0 λ3=2Ds;η0

ðq2ÞjfDs→η0
þ ðq2Þj2dq2R ðMDs−MηÞ2

0 λ3=2Ds;η
ðq2ÞjfDs→η

þ ðq2Þj2dq2
;

ð45Þ

where λH;PðxÞ is the heavy-light kinematic factor

λH;PðxÞ ¼
1

4M2
H
ððM2

H þM2
P − xÞ2 − 4M2

HM
2
PÞ; ð46Þ

by replacing fþðq2Þ with the Ball-Zwicky ansatz [38]

fBZþ ðq2Þ ¼ f0ð0Þ
�

1

1 − q2=M2
D�

s

þ rq2=M2
D�

s

ð1 − q2=M2
D�

s
Þð1 − αq2=M2

D�
s
Þ
�

ð47Þ

and using a chirally extrapolated value of our lattice results
for f0ð0Þ.MD�

s
; α; r are taken from the literature. We choose

to compute the ratio rather than the individual decay rates
since systematics in the chiral extrapolation and the
phenomenological parametrization of fþðq2Þ partially
cancel between the decay rates for η and η0.
Using the above parametrization only the ratio

fDs→η0
0 ð0Þ=fDs→η

0 ð0Þ enters in Eq. (45); thus we extrapolate
our two values for the ratio, given in Eq. (44), linearly in
M2

π to the physical mass point (see Fig. 11); this yields

fDs→η0
0 ð0Þ=fDs→η

0 ð0Þ ¼ 0.705ð120Þð041Þ, where the first
uncertainty is statistical and the second one is systematic
(taken as the difference between the central values atMπ ¼
370 MeV and 135 MeV). For MD�

s
we take the exper-

imental value [29], and for α, r we use the central values
determined in Ref. [4], with 50% uncertainties: α ¼
0.252ð126Þ and r ¼ 0.284ð142Þ.
We vary α and r independently within the form factors

fDs→η
þ and fDs→η0

þ and evaluate Eq. (45) assuming Gaussian

distributions of the five parameters fDs→η0
0 ð0Þ=fDs→η

0 ð0Þ, rη,
αη, rη0 and αη0 within the respective errors given above. In
the right panel of Fig. 11 the resulting histogram is shown.
We find

TABLE V. Parameters f0ð0Þ and b obtained from a fit
f0ðq2Þ ¼ f0ð0Þ=ð1 − bq2Þ. The coefficient β corresponds to an
equivalent fit using the BK [37] parametrization. The light cone
QCD sum rule results are taken from Ref. [4].

Set Meson f0ðq2 ¼ 0Þ b ðGeVÞ−2 β

S η 0.564(11) 0.127(06) 1.70(08)
η0 0.437(18) 0.119(23) 1.81(35)

A η 0.542(13) 0.090(14) 2.35(36)
η0 0.404(25) 0.188(32) 1.13(19)

LCSRs (at Mphys
π ) η 0.432(33) � � � � � �

η0 0.520(80) � � � � � �

8This should not be confused with the excited state of the
pseudoscalar meson which we also denoted by a � in the previous
subsection.
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ΓðD−
s → η0e−ν̄eÞ

ΓðD−
s → ηe−ν̄eÞ

¼ 0.128þ51
−42 ; ð48Þ

which deviates by 1.6σ from the CLEO result.
Taking these numbers at face value would be premature.

We recall that we used both a chiral extrapolation (our
computations were performed at Mπ ¼ 470 MeV and
Mπ ¼ 370 MeV) and a model for the form factors

fDs→η
þ ðq2Þ and fDs→η0

þ ðq2Þ. Our result, however, demon-
strates the potential that a future lattice study of the form

factors fDs→η
þ ðq2Þ and fDs→η0

þ ðq2Þ will have. A study of
these form factors, performed at the physical mass point,
will significantly reduce the errors, which at present are
dominated by systematics. We recall that the present work
is mainly a pilot study to establish the feasibility of
computations of form factors involving quark line discon-
nected diagrams.

V. CONCLUSIONS AND DISCUSSION

We calculated semileptonic decay form factors f0ðq2Þ
for Ds → ηlν̄l and Ds → η0lν̄l decays, by means of
numerical lattice simulation. We included all disconnected
fermion loop contributions. Despite the statistically noisy
and computationally expensive disconnected part, we
obtained the form factor at q2 ¼ 0 within statistical errors
of less than 6%. The values at q2 ¼ 0 are jfDs→η

0 j ¼
0.564ð11Þ and jfDs→η0

0 j ¼ 0.437ð18Þ at Mπ ≈ 470 MeV

and jfDs→η
0 j ¼ 0.542ð13Þ and jfDs→η0

0 j ¼ 0.404ð25Þ at
Mπ ≈ 370 MeV, where the errors are statistical only. The
masses of the η and the η0 mesons are Mη ¼ Mπ ¼
470.5ð1.8Þ MeV and Mη0 ¼ 1032ð27Þ MeV at Mπ≈
470 MeV, and Mη¼542.8ð6.2Þ and Mη0 ¼ 946ð65Þ MeV
at Mπ ≈ 370 MeV, keeping 2M2

K þM2
π ∝ ms þ 2ml

approximately constant. The mixing angle in the octet-
singlet basis for the Mπ ≈ 370 MeV case is θ8 ¼
−10.9ð1.5Þstatð0.5Þ∘fit, θ1 ¼ −5.5ð1.5Þstatð1.2Þ∘fit and θ̄ ¼
−7.7ð0.9Þstatð0.8Þ∘fit in the parametrization Eq. (29).
There is no mixing in the flavor symmetric Mπ ≈
470 MeV case. This means we have two different mixing
angles, indicating higher Fock state contributions. We are
not yet able to extrapolate the mixing angles, leading
distribution amplitudes or masses to the physical point;
however, assuming a monotonous dependence of the
mixing angles on the light quark mass, their absolute
values should increase toward the physical point.
It is interesting to note that the disconnected fermion loop

contribution to fDs→η0
0 is really significant. In Fig. 8 we saw

that the relevant three-point function contains a large
contribution from the disconnected diagram. This implies
that the Okubo-Zweig-Iizuka (OZI) rule suppressed gluonic
contribution is not suppressed in this decay mode due to the
chiral anomaly, as is also indicated by the fact that singlet
and octet η0 distribution amplitudes cannot be parametrized
by a single angle, relative to the octet-singlet basis.
We calculated the scalar form factor f0ðq2Þ which does

not require knowledge of the renormalization constants. In
order to compare with experiment, however, the vector
form factor fþðq2Þ is more relevant, since, in the massless
lepton limit, only fþðq2Þ contributes to the decay width.
Technically, a computation of fþðq2Þ is of a similar level of
complexity as the present study, and we plan to pursue this
in the near future. Finally, we remark that this work is an
exploratory study and the quark masses we used are not yet
physical. Having verified that computations of discon-
nected contributions to form factors are feasible, lighter
pion masses and larger volumes will be simulated, also
extending the present study to decays with the ϕ in the
final state.
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FIG. 11 (color online). Left: Extrapolation of the ratio fDs→η0
0 ð0Þ=fDs→η

0 ð0Þ to the physical pion mass. The inner error bar of the
extrapolated ratio is statistical, and the outer one includes systematics (see text for details). Right: Histogram of the ratio Eq. (45),

varying the ratio fDs→η0
0 ð0Þ=fDs→η

0 ð0Þ within its errors as well as the parameters r and α within Eq. (47) for the decays into η and η0.
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APPENDIX A: DETAILS OF THE ESTIMATION
OF DISCONNECTED LOOPS

In this appendix we explain the methods implemented to
calculate the disconnected loop given in Eq. (3). For
convenience we restate the equation as

C1ptðt; p; x0Þ ¼
X
x

expðip · ðx − x0ÞÞC1ptðt; xÞ; ðA1Þ

C1ptðt; xÞ ¼ tr

�X
x0;x0

Γϕðx; x00ÞM−1ðt; x00; t; x0Þϕðx0; xÞ
�
:

ðA2Þ

The all-to-all propagator, M−1ðt; x00; t; x0Þ, is computed
using low mode deflation combined with stochastic esti-
mation. This involves calculating nlow (exact) low eigenm-
odes (in absolute magnitude) of the Hermitian Dirac
operator Q ¼ γ5M,

Qjλii ¼ λijλii; ðA3Þ
where the λi are real. The low mode contribution to M−1 is
given by

M−1jlow ¼
X
i

1

λi
jλiihλijγ5: ðA4Þ

For small quark masses the low modes give the most
singular directions of M−1 and the higher mode contribu-
tionsM−1jhigh¼M−1−M−1jlow become small. These higher
modes are estimated stochastically using 1ffiffi

2
p ðZ2 þ iZ2Þ

noise vectors, which approximately span a complete set

1

nstoch

Xnstoch
s¼1

jηsihηsj ¼ 1þO

�
1ffiffiffiffiffiffiffiffiffiffi
nstoch

p
�
: ðA5Þ

We have

M−1jhigh ¼
1

nstoch

Xnstoch
s¼1

M−1j~ηsihηsj; ðA6Þ

where

j~ηsi ¼ γ5

�
1 −

Xnlow
i¼1

jλiihλij
�
γ5jηsi ðA7Þ

is the source vector projected onto the subspace of the
higher modes.
Stochastic estimation introduces additional (possibly

dominant) noise on top of the gauge noise, and this needs
to be reduced. We implemented a number of techniques to
achieve this:
(1) Time and spin partitioning [41]. The stochastic

sources were given nonzero values only on every
fourth time slice and for a single spin index. To
reconstruct the full propagator at every time slice
requires 4ðspinÞ × 4ðtimeÞ ¼ 16 inversions.

(2) Hopping parameter acceleration (HPA) [42]. A
Wilson-type Dirac operator

M ¼ 1

2κ
ð1 − κDÞ ðA8Þ

satisfies the identity

M−1 ¼ 2κ
X∞
i¼0

ðκDÞi ¼ 2κ
Xn−1
i¼0

ðκDÞi þ ðκDÞnM−1

ðA9Þ

for any integer n ≥ 0. When this expression is
inserted into Eq. (A2), the first n terms may be
zero, where the value of n depends on Γ and the form
of the Dirac operator. With stochastic estimation of
M−1 these terms will only contribute to the noise and
can be omitted, giving ðκDÞnM−1 as an improved
estimate of M−1.
Combining this with low mode deflation we have

M−1 ¼
Xnlow
i¼1

1

λi
ðκDÞnjλiihλijγ5

þ 1

nstoch

Xnstoch
s¼1

ðκDÞnM−1j~ηsihηsj: ðA10Þ

For the clover action and Γ ¼ γ5 we can use n ¼ 2.
(3) The truncated solver method (TSM) [43]. This

method involves truncating the solver after a few
iterations. The (hopefully small) correction to this
truncation is calculated using a smaller number of
stochastic estimates,
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1

nstoch

Xnstoch
s¼1

M−1j~ηsihηsj ↦
1

N1

XN1

s¼1

M−1
truncj~ηsihηsj

þ 1

N2

XN1þN2

s¼N1þ1

ðM−1 −M−1
truncÞj~ηsihηsj; ðA11Þ

where N2 < N1. The truncated part is calculated
with a conjugate gradient (CG) solver, while for
M−1j~ηsi we use the domain decomposition solver

implementation of Ref. [40]. To obtain the full
expression for M−1 using HPA and low mode
deflation one substitutes Eq. (A11) into Eq. (A10).

The parameters for the various techniques are chosen so
that the stochastic error is minimized for fixed computa-
tional cost; see Ref. [11] for details. Our optimal choices
are listed in Table VI. We found the HPA to be the most cost
efficient noise reduction technique for our problem. The
TSM only provided a slight improvement, due to the use of
smeared loops. In general, the advantage of using the TSM
will also depend on the efficiency of the solver.
Finally, we note that due to parity and charge conjuga-

tion considerations the disconnected loop in position space,
C1ptðt; xÞ, is real for Γ ¼ γ5. This means the imaginary part
of our stochastic estimation of C1ptðt; xÞ only contributes to
the noise, and we can set it to zero.

APPENDIX B: TWO-POINT FUNCTIONS

In the octet-singlet basis, we need the following two-
point functions:

hO8ðt; pÞO†
8ð0Þi ¼

1

3
hðCll þ Css − 2Dll − 2Dss þ 2Dls þ 2DslÞi; ðB1Þ

hO1ðt; pÞO†
1ð0Þi ¼

1

3
hð2Cll þ Css − 4Dll −Dss − 2Dls − 2DslÞi; ðB2Þ

hO1ðt; pÞO†
8ð0Þi ¼

ffiffiffi
2

p

3
hðCll − Css − 2Dll þDss þ 2Dls −DslÞi; ðB3Þ

hO8ðt; pÞO†
1ð0Þi ¼ hO1ðt; pÞO†

8ð0Þi�; ðB4Þ

where Caa ¼ Caaðt; pÞ is a connected two-point function of
quark flavor a ¼ l; s andDab is the disconnected two-point
function of quark flavors a and b,

Dabðt; pÞ ¼
a4

V4

XT=a−1
t0=a¼0

Ca
1ptðtþ t0; pÞCb

1ptðt0;−pÞ; ðB5Þ

where T is the temporal lattice size, V4 is the four-volume
and Ca

1ptðt; pÞ is the disconnected fermion loop, Eq. (3), for
quark flavor a.
The calculation of Ca

1ptðt; pÞ is detailed in Appendix A.
For the connected two-point function, we implemented low
mode averaging (LMA) [23,24] reusing the eigenmodes
computed for the evaluation of the disconnected loop. As
discussed in Ref. [44], LMA works very efficiently for
pseudoscalar meson two-point functions. We used LMA for
both the connected light-light (Cll) and strange-strange
(Css) two-point functions.

A connected two-point function with LMA is given by

C2pt
LMAðt; pÞ ¼ C2pt

pa ðt; p; x0Þ − C2pt
low;paðt; p; x0Þ þ C2pt

lowðt; pÞ;
ðB6Þ

where C2pt
pa ðt; p; x0Þ is the standard point-to-all two-point

function, calculated with a single source point at x0 ¼
ðt0; x0Þ. For simplicity, we have suppressed the quark flavor
index and, initially, do not consider quark smearing. In
Eq. (B6), the low mode contribution to the point-to-all
two-point function,

C2pt
low;paðt; p; x0Þ

¼
X
x

expðip · xÞ
Xnlow
i;j¼1

1

λiλj
hλiðx0Þjγ5Γ†jλjðx0Þi

× hλjðxþ x0Þjγ5Γjλiðxþ x0Þi; ðB7Þ

TABLE VI. Parameters for the estimation of the disconnected
loop. If the TSM is used, nstoch stands for N1 þ N2, where N1 and
N2 are the numbers of stochastic estimates used for the truncated
part and to estimate the bias, respectively. Note that due to the use
of spin and time dilution, each stochastic estimation requires 16
inversions of the noise vector.

Set Quark nlow nstoch TSM

S l, s 24 10þ 3 Truncated after 150 CG iterations
A l 40 24þ 8 Truncated after 120 CG iterations

s 40 48 (Without TSM)
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where x ¼ ðt; xÞ and Γ ¼ γ5 at the source and sink, is subtracted and replaced by the low mode contribution averaged over
all lattice points,

C2pt
lowðt; pÞ ¼

a4

V4

X
x0

C2pt
low;paðt; p; x0Þ: ðB8Þ

Smearing the quarks is implemented by replacing the eigenvectors jλii in Eq. (B7) with smeared vectors, ϕjλii, for a
smearing function ϕ.
Finally, we averaged over forward and backward propagating two-point functions, as well as rotationally equivalent

momentum combinations.

APPENDIX C: THREE-POINT FUNCTIONS

The three-point function we need to determine is

hCDs→ηð0Þ
3pt ðt; p; k; tsep; x0Þi ¼ h0jOηð0Þ ðk; tsep þ t0ÞSðq; tþ t0ÞO†

Ds
ðt0; x0Þj0i

¼
X
x;y

eik·xeiq·yh0jOηð0Þ ðtsep þ t0; xþ x0ÞSðtþ t0; yþ x0ÞO†
Ds
ðt0; x0Þj0i; ðC1Þ

whereOηð0Þ ,ODs
are the interpolators, S is the local scalar current and p ¼ qþ k. The interpolators for η and η0 are obtained

from Eq. (7), by solving the generalized eigenvalue problem for each k. For k ¼ 0, we used the improved mixing angles θ
and θ0 as discussed in Sec. III.
We need both connected and disconnected contributions to calculate the three-point function Eq. (C1); see Fig. 1. For the

connected part, we used the stochastic method detailed in Ref. [45]. This approach allows us to access many momentum
combinations at a lower computational cost compared to the standard sequential source method. We compute all
rotationally equivalent momentum combinations and average over these.
The disconnected part is obtained from combining a connected charm-strange two-point function, Ccsðt; q; x0Þ, with a

one-point quark loop of flavor a,

C3pt;a
disc ðt; tsep; p; k; x0Þ ¼ Ca

1ptðt0 þ tsep; k; x0ÞCcsðt; q; x0Þ; ðC2Þ

and

Ccsðt; q; x0Þ ¼
X
x

expðiq · xÞtr½M−1
c ðxþ x0; x0Þγ5M−1

s ðx0; xþ x0Þ�: ðC3Þ

Note that the charm-strange two-point function has a pseudoscalar source and a scalar sink. The one-point loop is calculated
as described in Appendix A.
We employ low mode averaging in a similar way to that used for the computation of the connected two-point function in

Appendix B, by averaging the low mode contributions to C3pt;a
disc over x0:

C3pt;a
disc;LMAðt; tsep; p; k; x0Þ ¼ Ca

1ptðt0 þ tsep; k; x0Þ½Ccsðt; q; x0Þ − Clow;paðt; q; x0Þ�

þ 1

Ny

X
y

Ca
1ptðt0 þ tsep þ ty; k; x0 þ yÞClow;paðt; q; x0 þ yÞÞ; ðC4Þ

where

Clow;paðt; q; x0Þ≡
X
x

expðip · xÞ
Xnlow
i¼1

1

λi
tr½M−1

c ðxþ x0; x0Þγ5jλiðx0Þihλiðxþ x0Þj� ðC5Þ

and

Ca
1ptðt0 þ tsep þ ty; k; x0 þ yÞ ¼ Ca

1ptðt0 þ tsep þ ty; k; x0Þ expð−ik · yÞ: ðC6Þ
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The eigenvalues, λi, and eigenvectors, jλii, are computed
for the strange quark. We average over Ny ¼ 43 < V4=a4

source points only, due to the computational cost of
calculating the charm quark propagator, M−1

c , for each
source. We employ the subset y ¼ ðty; yÞ with ty ¼ 0 and
y ¼ ðn1; n2; n3ÞL=ð4aÞ with ni ¼ 0; 1; 2; 3.
Finally, we averaged over rotationally equivalent

momentum combinations, and averaged over þtsep
and −tsep for each value of sink-source separation
jtsepj. Figure 12 shows a typical example of a com-
parison of the relative error of the disconnected three-
point function with and without low mode averaging.
The figure illustrates that LMA reduces the error
significantly.

APPENDIX D: DATA

The fitted values of two-point functions are listed in
Tables VII and VIII. The values of the scalar form
factor f0ðq2Þ at each q2 are listed in Tables IX, X, XI
and XII.

TABLE VII. The ground state energies E and energy gaps ΔE to the first excited state for zero and finite momenta for Set A. ΔE was
obtained using Eq. (38). The mass of the η0 meson is determined applying the improved method (see Sec. III). Also listed is the mass
obtained by using the lattice dispersion relation Eq. (10) (lat. disp.).

Ground state Excited state

p × L=ð2πÞ Fit range aE χ2=d:o:f: Fit range aΔE χ2=d:o:f:

(0,0,0) 12–24 0.141(01) 1.08 � � � � � � � � �
π (1,0,0) 9–17 0.296(03) 0.57 � � � � � � � � �

(1,1,0) 8–17 0.409(18) 0.78 � � � � � � � � �
(1,1,1) 6–11 0.522(82) 0.40 � � � � � � � � �

(lat. disp.)a � � � 0.141(01) 0.40 � � � � � � � � �
(0,0,0) 6–24 0.207(03) 0.73 2–4 0.638(91) 0.50

η (1,0,0) 9–23 0.328(05) 0.57 2–7 0.437(43) 0.16
(1,1,0) 8–14 0.438(15) 0.71 2–4 0.645(219) 0.02
(1,1,1)b 5–11 0.577(45) 0.26 � � � � � � � � �

(lat. disp.) � � � 0.206(02) 1.33 � � � � � � � � �
(0,0,0) 7–11 0.309(38) 0.43 2–4 0.417(105) 0.03

η0 (1,0,0) 6–11 0.452(22) 0.06 2–4 0.815(716) 0.21
(1,1,0) 6–10 0.552(40) 1.17 � � � � � � � � �
(1,1,1)b 4–7 0.715(81) 0.30 � � � � � � � � �

(lat. disp.) � � � 0.360(25) 1.77 � � � � � � � � �
(0,0,0) 11–21 0.775(02) 0.15 2–6 0.356(98) 0.45

Ds (1,0,0) 11–21 0.814(03) 0.26 2–6 0.333(68) 0.47
(1,1,0) 11–20 0.851(05) 0.58 2–6 0.324(62) 0.49
(1,1,1) 11–21 0.886(07) 0.93 2–6 0.321(64) 0.52
(2,0,0) 11–20 0.924(10) 0.18 2–6 0.371(116) 0.37
(2,1,0) 11–20 0.959(15) 0.42 2–6 0.396(154) 0.39

(lat. disp.)a � � � 0.774(02) 0.41 � � � � � � � � �
aNot used.
bNot included in the dispersion relation.
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FIG. 12 (color online). The relative errors of the disconnected
three-point function hC3pt;l

disc ðt; tsep; p; kÞi with and without low
mode averaging for Set S. The sink-source separation is
tsep ¼ 10a, the Ds meson is located at t ¼ 0 with lattice
momentum P ¼ ð1; 0; 0Þ and the disconnected light-quark loop
is located at t=a ¼ 10 with momentum K ¼ ð1; 0; 0Þ.
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TABLE IX. The Ds → ηlν̄l scalar form factor f0ðq2Þ for Set A. The first column is a representative example for a given momentum
combination. The last column (labeled “Equiv.”) lists the number of equivalent momentum combinations. The fit ranges and tsep used in
the simultaneous fits are also listed. For the fit function, RðtÞ in Eq. (40), “2 expþc” indicates that all terms are included; i.e. c, A1 and
A2 are free parameters of the fit.

p; q; k × L=ð2πÞ a2q2 fðq2Þ tsep=a [fit range] Fit function χ2=d:o:f: Equiv.

(0,0,0), (1,0,0), ð−1; 0; 0Þ 0.129(05) −0.615ð19Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 1.01 6
(1,0,0), (0,0,0), (1,0,0) 0.234(06) −0.659ð27Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 0.85 6
(1,0,0), (1,1,0), ð0;−1; 0Þ 0.097(06) −0.592ð19Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 0.71 24
(1,0,0), (2,0,0), ð−1; 0; 0Þ −0.040ð06Þ −0.544ð18Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 0.53 6
(1,1,0), (1,0,0), (0,1,0) 0.202(07) −0.643ð29Þ 8[2–6], 10[2–8], 16[10–14] 2 expþc 0.72 24
(1,1,0), (1,1,1), ð0; 0;−1Þ 0.065(07) −0.583ð22Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 0.65 24
(1,1,1), (1,1,0), (0,0,1) 0.172(10) −0.607ð30Þ 8[2–6], 10[2–8], 16[9–14] 2 expþc 0.68 24
(0,0,0), (1,1,0), ð−1;−1; 0Þ −0.023ð10Þ −0.515ð21Þ 8[3–6], 10[3–8], 16[10–14] 2 expþc 0.74 12
(1,0,0), (0,1,0), ð1;−1; 0Þ 0.073(11) −0.539ð27Þ 8[3–6], 10[3–8], 16[10–14] 2 expþc 0.55 24
(1,0,0), (1,1,1), ð0;−1;−1Þ −0.064ð11Þ −0.481ð24Þ 8[3–6], 10[3–8], 16[10–14] 2 expþc 0.56 24
(1,1,0), (1,0,1), ð0; 1;−1Þ 0.034(12) −0.526ð30Þ 8[3–6], 10[3–8], 16[11–14] 2 expþc 0.95 48
(1,1,0), (2,0,0), ð−1; 1; 0Þ −0.103ð12Þ −0.450ð30Þ 8[3–6], 10[3–8], 16[11–14] 2 expþc 0.82 24

TABLE VIII. The same as Table VII for Set S.

Ground state Excited state

p × L=ð2πÞ Fit range aE χ2=d:o:f: Fit range aΔE χ2=d:o:f:

(0,0,0) 14–24 0.179(01) 0.55 5–12 0.359(56) 0.79
η (1,0,0) 8–22 0.320(02) 1.37 2–5 0.574(34) 0.72
ð¼ πÞ (1,1,0) 8–18 0.420(05) 1.09 2–4 0.590(76) 0.15

(1,1,1) 6–15 0.500(12) 0.64 2–5 0.648(101) 0.68
(2,0,0)b 4–10 0.626(21) 0.22 � � � � � � � � �

(lat. disp.)a � � � 0.179(01) 5.44 � � � � � � � � �
(0,0,0) 4–11 0.417(23) 0.72 � � � � � � � � �

η0 (1,0,0) 5–10 0.471(11) 0.98 � � � � � � � � �
(1,1,0) 6–12 0.511(17) 1.55 2–4 0.585(100) 0.56
(1,1,1) 8–12 0.524(77) 0.66 � � � � � � � � �

(lat. disp.) � � � 0.392(10) 1.33 � � � � � � � � �
(0,0,0) 11–24 0.769(01) 0.44 2–7 0.391(65) 0.60

Ds (1,0,0) 12–24 0.808(02) 0.37 2–7 0.365(56) 0.45
(1,1,0) 12–24 0.846(03) 0.24 2–8 0.360(52) 0.27
(1,1,1) 10–24 0.885(03) 0.32 2–8 0.399(38) 0.40
(2,0,0)b 10–24 0.921(04) 0.24 2–6 0.407(47) 0.26
(2,1,0)b 10–24 0.951(05) 0.28 2–6 0.379(39) 0.35

(lat. disp.)a � � � 0.768(01) 0.48 � � � � � � � � �
aNot used.
bNot included in the dispersion relation.
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TABLE X. TheDs → η0lν̄l scalar form factor f0ðq2Þ for Set A, displayed as in Table IX. “1 expþc” indicates that the parameter A2 is
set to zero in the fit.

p; q; k × L=ð2πÞ a2q2 fðq2Þ tsep=a [fit range] Fit function χ2=d:o:f: Equiv.

(0,0,0), (1,0,0), ð−1; 0; 0Þ 0.035(14) 0.394(44) 8[2–6], 10[4–8], 16[10–14] 2 expþc 1.23 6
(1,0,0), (0,0,0), (1,0,0) 0.130(15) 0.395(76) 8[4–6], 10[4–8], 16[12–14] 2 expþc 1.37 6
(1,0,0), (1,1,0), ð0;−1; 0Þ −0.007ð15Þ 0.357(50) 8[2–6], 10[4–8], 16[10–14] 2 expþc 1.21 24
(1,0,0), (2,0,0), ð−1; 0; 0Þ −0.144ð15Þ 0.356(39) 8[2–6], 10[4–8], 16[10–14] 2 expþc 0.85 6
(1,1,0), (1,0,0), (0,1,0) 0.089(17) 0.491(80) 8[2–6], 10[4–8], 16[11–12] 2 expþc 1.15 24
(1,1,0), (1,1,1), ð0; 0;−1Þ −0.048ð17Þ 0.350(56) 8[2–6], 10[4–8], 16[11–13] 2 expþc 1.25 24
(0,0,0), (1,1,0), ð−1;−1; 0Þ −0.088ð17Þ 0.375(26) 8[3–5], 10[4–7], 16[10–13] 1 expþc 0.50 12
(1,0,0), (0,1,0), ð1;−1; 0Þ −0.000ð20Þ 0.416(36) 8[3–5], 10[5–7], 16[10–13] 1 expþc 0.46 24
(1,0,0), (1,1,1), ð0;−1;−1Þ −0.137ð20Þ 0.360(29) 8[3–5], 10[4–7], 16[10–13] 1 expþc 0.56 24
(1,1,0), (0,0,0), (1,1,0) 0.089(22) 0.510(59) 8[4–5], 10[4–7], 16[11–13] 1 expþc 0.82 12
(1,1,0), (1,0,1), ð0; 1;−1Þ −0.048ð22Þ 0.441(42) 8[3–4], 10[4–7], 16[10–13] 1 expþc 0.53 48
(1,1,0), (2,0,0), ð−1; 1; 0Þ −0.185ð22Þ 0.353(33) 8[3–5], 10[4–7], 16[10–13] 1 expþc 0.73 24
(1,1,1), (1,0,0), (0,1,1) 0.043(25) 0.481(71) 8[4–5], 10[4–7], 16[12–13] 1 expþc 0.62 24
(2,0,0), (1,1,0), ð1;−1; 0Þ 0.001(29) 0.432(70) 8[4–5], 10[5–7], 16[11–13] 1 expþc 0.88 24
(0,0,0), (1,1,1), ð−1;−1;−1Þ −0.201ð12Þ 0.259(41) 8[4–5], 10[6–7], 16[11–13] 1 expþc 1.21 8
(1,0,0), (0,1,1), ð1;−1;−1Þ −0.125ð19Þ 0.266(56) 8[4–5], 10[6–7], 16[12–13] 1 expþc 0.95 24
(1,1,0), (0,0,1), ð1; 1;−1Þ −0.048ð25Þ 0.336(93) 8[4–5], 10[6–7], 16[12–13] 1 expþc 0.68 24

TABLE XI. The Ds → ηlν̄l scalar form factor f0ðq2Þ for Set S, displayed as in Table IX. Note that the χ2=d:o:f: refer to uncorrelated
fits.

p; q; k × L=ð2πÞ a2q2 fðq2Þ tsep=a [fit range] Fit function χ2=d:o:f: Equiv.

(0,0,0), (0,0,0), (0,0,0) 0.348(02) −0.827ð14Þ 16[7–10], 24[13–19] 2 expþc 0.10 1
(1,0,0), (1,0,0), (0,0,0) 0.328(03) −0.812ð17Þ 16[7–10], 24[13–19] 2 expþc 0.20 6
(1,1,0), (1,1,0), (0,0,0) 0.309(04) −0.786ð25Þ 16[8–11], 24[13–19] 2 expþc 0.01 12
(1,1,1), (1,1,1), (0,0,0) 0.293(05) −0.773ð29Þ 16[8–10], 24[13–19] 2 expþc 0.01 8
(0,0,0), (1,0,0), ð−1; 0; 0Þ 0.133(02) −0.610ð16Þ 8[4–5], 10[4–7], 16[4–13], 24[13–19] 2 expþc 0.51 6
(1,0,0), (0,0,0), (1,0,0) 0.239(02) −0.658ð25Þ 8[4–5], 10[4–7], 16[4–13], 24[12–19] 2 expþc 0.20 6
(1,0,0), (1,1,0), ð0;−1; 0Þ 0.102(02) −0.597ð14Þ 8[4–5], 10[4–7], 16[4–13], 24[11–19] 2 expþc 0.26 24
(1,0,0), (2,0,0), ð−1; 0; 0Þ −0.036ð02Þ −0.546ð13Þ 8[4–5], 10[4–7], 16[4–13], 24[15–20] 2 expþc 0.57 6
(1,1,0), (1,0,0), (0,1,0) 0.209(03) −0.640ð20Þ 8[4–5], 10[4–7], 16[4–13] 2 expþc 0.35 24
(1,1,0), (1,1,1), ð0; 0;−1Þ 0.072(03) −0.582ð16Þ 8[4–5], 10[4–7], 16[4–13], 24[13–19] 2 expþc 0.20 24
(0,0,0), (1,1,0), ð−1;−1; 0Þ −0.015ð03Þ −0.550ð23Þ 8[3–5], 10[3–7], 16[10–13], 24[18–21] 2 expþc 0.07 12
(1,0,0), (0,1,0), ð1;−1; 0Þ 0.083(04) −0.571ð32Þ 8[3–5], 10[3–7], 16[8–13], 24[19–21] 2 expþc 0.02 24
(1,0,0), (1,1,1), ð0;−1;−1Þ −0.054ð04Þ −0.513ð22Þ 8[3–5], 10[3–7], 16[8–13], 24[17–21] 2 expþc 0.31 24
(1,1,0), (1,0,1), ð0; 1;−1Þ 0.046(05) −0.571ð29Þ 8[3–5], 10[3–7], 16[8–13], 24[17–21] 2 expþc 0.20 48
(1,1,0), (2,0,0), ð−1; 1; 0Þ −0.091ð05Þ −0.498ð21Þ 8[2–6], 10[2–8], 16[2–14], 24[13–21] 2 expþc 0.36 24
(0,0,0), (1,1,1), ð−1;−1;−1Þ −0.131ð06Þ −0.517ð33Þ 8[2–6], 10[2–8], 16[10–14], 24[17–21] 2 expþc 0.32 8
(1,0,0), (0,1,1), ð1;−1;−1Þ −0.039ð07Þ −0.504ð36Þ 8[2–6], 10[2–8], 16[11–14] 2 expþc 0.58 24
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