001     202902
005     20250314084113.0
024 7 _ |a 10.1007/978-3-319-16012-2_1
|2 doi
037 _ _ |a FZJ-2015-05048
100 1 _ |a Zhukov, Ilya
|0 P:(DE-Juel1)144419
|b 0
|e Corresponding author
111 2 _ |a Tools for High Performance Computing 2014
|c Stuttgart
|d 2014-10-01 - 2014-10-02
|w Germany
245 _ _ |a Scalasca v2: Back to the Future
260 _ _ |a Cham
|c 2015
|b Springer International Publishing
295 1 0 |a Niethammer, Christoph (Editor) Chapter 1 ; ISBN: 978-3-319-16011-5
300 _ _ |a 1-24
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1438147781_994
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Scalasca is a well-established open-source toolset that supports the performance optimization of parallel programs by measuring and analyzing their runtime behavior. The analysis identifies potential performance bottlenecks – in particular those concerning communication and synchronization – and offers guidance in exploring their causes. The latest Scalasca v2 release series is based on the community instrumentation and measurement infrastructure Score-P, which is jointly developed by a consortium of partners from Germany and the US. This significantly improves interoperability with other performance analysis tool suites such as Vampir and TAU due to the usage of the two common data formats CUBE4 for profiles and the Open Trace Format 2 (OTF2) for event trace data. This paper will showcase recent as well as ongoing enhancements, such as support for additional platforms (K computer, Intel Xeon Phi) and programming models (POSIX threads, MPI-3, OpenMP4), and features like the critical-path analysis. It also summarizes the steps necessary for users to migrate from Scalasca v1 to Scalasca v2.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 1
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Feld, Christian
|0 P:(DE-Juel1)132244
|b 1
700 1 _ |a Geimer, Markus
|0 P:(DE-Juel1)132112
|b 2
700 1 _ |a Knobloch, Michael
|0 P:(DE-Juel1)132163
|b 3
700 1 _ |a Mohr, Bernd
|0 P:(DE-Juel1)132199
|b 4
700 1 _ |a Saviankou, Pavel
|0 P:(DE-Juel1)132249
|b 5
773 _ _ |a 10.1007/978-3-319-16012-2_1
909 C O |o oai:juser.fz-juelich.de:202902
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144419
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132112
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132163
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132199
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132249
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21