001     202943
005     20210129220250.0
024 7 _ |a 10.1073/pnas.1509069112
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a WOS:000358656500063
|2 WOS
024 7 _ |a altmetric:4232411
|2 altmetric
024 7 _ |a pmid:26124094
|2 pmid
037 _ _ |a FZJ-2015-05066
082 _ _ |a 000
100 1 _ |a Braun, Tatjana
|0 P:(DE-Juel1)164144
|b 0
|u fzj
245 _ _ |a Archaeal actin from a hyperthermophile forms a single-stranded filament
260 _ _ |a Washington, DC
|c 2015
|b National Acad. of Sciences
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1443615487_3799
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 °C. Although this protein only has ∼20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit-subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit-subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Orlova, Albina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Valegård, Karin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lindås, Ann-Christin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schröder, Gunnar
|0 P:(DE-Juel1)132018
|b 4
|u fzj
700 1 _ |a Egelman, Edward H.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1073/pnas.1509069112
|g Vol. 112, no. 30, p. 9340 - 9345
|0 PERI:(DE-600)1461794-8
|n 30
|p 9340 - 9345
|t Proceedings of the National Academy of Sciences of the United States of America
|v 112
|y 2015
|x 1091-6490
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202943/files/Archaeal%20actin%20from%20a%20hyperthermophile%20forms%20a%20single-stranded%20filament.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202943
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164144
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132018
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b P NATL ACAD SCI USA : 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21