001     202953
005     20220930130045.0
024 7 _ |a 10.1063/1.4927622
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a WOS:000358924200036
|2 WOS
024 7 _ |a 2128/17321
|2 Handle
024 7 _ |a altmetric:4468703
|2 altmetric
037 _ _ |a FZJ-2015-05073
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Schulte-Braucks, C.
|0 P:(DE-Juel1)161530
|b 0
|e Corresponding author
245 _ _ |a Negative differential resistance in direct bandgap GeSn p-i-n structures
260 _ _ |a Melville, NY
|c 2015
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1438684332_16996
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Certain GeSn alloys are group IV direct bandgap semiconductors with prospects for electrical and optoelectronical applications. In this letter, we report on the temperature dependence of the electrical characteristics of high Sn-content Ge0.89Sn0.11 p-i-n diodes. NiGeSn contacts were used to minimize the access resistance and ensure compatibility with silicon technology. The major emphasis is placed on the negative differential resistance in which peak to valley current ratios up to 2.3 were obtained. TCAD simulations were performed to identify the origin of the various current contributions, providing evidence for direct band to band tunneling and trap assisted tunneling.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)
|0 G:(EU-Grant)619509
|c 619509
|f FP7-ICT-2013-11
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Key Technologies
|0 V:(DE-MLZ)GC-150-1
|2 V:(DE-HGF)
|x 0
700 1 _ |a Stange, D.
|0 P:(DE-Juel1)161180
|b 1
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 2
700 1 _ |a Blaeser, S.
|0 P:(DE-Juel1)145410
|b 3
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 6
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 7
773 _ _ |a 10.1063/1.4927622
|g Vol. 107, no. 4, p. 042101 -
|0 PERI:(DE-600)1469436-0
|n 4
|p 042101
|t Applied physics letters
|v 107
|y 2015
|x 1077-3118
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/202953/files/2015%20APL%20GeSn%20NDR.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:202953
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161180
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145410
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21