000202957 001__ 202957
000202957 005__ 20210129220252.0
000202957 0247_ $$2doi$$a10.7554/eLife.07919
000202957 0247_ $$2Handle$$a2128/9015
000202957 0247_ $$2WOS$$aWOS:000358923700001
000202957 0247_ $$2altmetric$$aaltmetric:4249804
000202957 0247_ $$2pmid$$apmid:26142457
000202957 037__ $$aFZJ-2015-05075
000202957 041__ $$aEnglish
000202957 082__ $$a500
000202957 1001_ $$00000-0002-0950-7460$$aKubota, Yoshiyuki$$b0$$eCorresponding author
000202957 245__ $$aFunctional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons
000202957 260__ $$aCambridge$$beLife Sciences Publications$$c2015
000202957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1438249102_2127
000202957 3367_ $$2DataCite$$aOutput Types/Journal article
000202957 3367_ $$00$$2EndNote$$aJournal Article
000202957 3367_ $$2BibTeX$$aARTICLE
000202957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202957 3367_ $$2DRIVER$$aarticle
000202957 520__ $$aInhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrographs (EMgs) reconstruction showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition.
000202957 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000202957 588__ $$aDataset connected to CrossRef
000202957 7001_ $$0P:(DE-HGF)0$$aKondo, Satoru$$b1
000202957 7001_ $$0P:(DE-HGF)0$$aNomura, Masaki$$b2
000202957 7001_ $$0P:(DE-HGF)0$$aHatada, Sayuri$$b3
000202957 7001_ $$0P:(DE-HGF)0$$aYamaguchi, Noboru$$b4
000202957 7001_ $$0P:(DE-HGF)0$$aMohamed, Alsayed A$$b5
000202957 7001_ $$0P:(DE-HGF)0$$aKarube, Fuyuki$$b6
000202957 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim$$b7$$ufzj
000202957 7001_ $$0P:(DE-HGF)0$$aKawaguchi, Yasuo$$b8
000202957 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.07919$$gVol. 4$$p00$$teLife$$v4$$x2050-084X$$y2015
000202957 8564_ $$uhttp://elifesciences.org/content/early/2015/07/04/eLife.07919
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.pdf$$yOpenAccess
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.gif?subformat=icon$$xicon$$yOpenAccess
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202957 8564_ $$uhttps://juser.fz-juelich.de/record/202957/files/eLife.07919.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202957 909CO $$ooai:juser.fz-juelich.de:202957$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202957 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000202957 9141_ $$y2015
000202957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202957 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000202957 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000202957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2013
000202957 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000202957 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202957 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202957 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2013
000202957 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202957 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202957 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000202957 980__ $$ajournal
000202957 980__ $$aVDB
000202957 980__ $$aFullTexts
000202957 980__ $$aUNRESTRICTED
000202957 980__ $$aI:(DE-Juel1)INM-2-20090406
000202957 9801_ $$aFullTexts