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Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells
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The maximum open-circuit voltage of a solar cell can be evaluated in terms of its ability to emit light. We
herein verify the reciprocity relation between the electroluminescence spectrum and subband-gap quantum
efficiency spectrum for several photovoltaic technologies at different stages of commercial development,
including inorganic, organic, and a type of methyl-ammonium lead- halide CH;NH;Pbl;_,Cl, perovskite
solar cells. Based on the detailed balance theory and reciprocity relations between light emission and light
absorption, voltage losses at open circuit are quantified and assigned to specific mechanisms, namely,
absorption edge broadening and nonradiative recombination. The voltage loss due to nonradiative
recombination is low for inorganic solar cells (0.04-0.21 V), while for organic solar cell devices it is
larger but surprisingly uniform, with values of 0.34—0.44 V for a range of material combinations. We show
that, in CH;NH;Pbl;_,Cl, perovskite solar cells that exhibit hysteresis, the loss to nonradiative
recombination varies substantially with voltage scan conditions. We then show that for different solar
cell technologies there is a roughly linear relation between the power conversion efficiency and the voltage

loss due to nonradiative recombination.

DOI: 10.1103/PhysRevApplied.4.014020

I. INTRODUCTION

In an ideal solar cell, the short-circuit current Jgyc is
determined by the absorbed photon flux, while the open-
circuit voltage Vo depends on the balance between
photogeneration and recombination. This balance depends
strongly on the band gap of the solar cell that determines
both the light absorption and the flux of the recombining
charge carrier. The Shockley-Queisser (SQ) limit [1] is one
way to define an ideal solar cell and is based on the
principle that any light-absorbing medium must also emit
light, implying that radiative recombination is unavoidable.
Thus, by calculating absorption and emission due to
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radiative recombination, it is possible to determine the
maximum open-circuit voltage V¢ gq of an idealized device
absorbing all light above a certain band-gap energy [2,3].
The resulting open-circuit voltage in the SQ limit depends on
the intensity of incoming light, but, for the normal reference
point of one sun illumination and no concentration, gV oc sq
is reduced relative to the band gap by about 250 meV for the
typical range of band gaps used in photovoltaics [4]. Here ¢
is the elementary charge. For real solar cells, the open-circuit
voltage is further reduced due to additional, nonradiative
recombination that is neglected in the SQ theory or by a
gradual absorption onset rather than the ideal step function
assumed in the SQ limit.

Both sources of additional voltage loss are relevant to
many solution-processable solar cells. In organic hetero-
junction solar cells, for instance, the emission usually
originates from the charge transfer state at the donor-
acceptor interface [5], which is usually substantially
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redshifted relative to the absorption onset [6]. In addition,

in organic solar cells, nonradiative recombination exceeds
the amount of radiative recombination typically by a factor
of 10° or more, enhancing the difference between the
absorption onset and the actual open-circuit voltage of a
solar cell [7]. In order to maximize V¢ and reduce the
difference between the ideal and actual cases, it is important
to be able to quantify and distinguish the losses.

One frequently used way to quantify the losses in V¢ is
to relate them to characteristic energy levels in the device
such as the band gap in the case of inorganic solar cells
[8—11] or to the charge transfer state energy in the case of
organic heterojunction solar cells [5,12—14]. An alternative
approach is to use a slightly extended version of the SQ
theory where a radiative open-circuit voltage Ve aq that
respects the actual light absorption spectrum is defined
[15—17]. This allows us to assign the difference between
Voc.sq and Ve g to the shape of the absorptance, which is
influenced, for instance, by the band offsets at the donor-
acceptor heterointerface, and the difference between
Vocraa and Ve to nonradiative recombination [7,18-20].

In this work, we use electroluminescence and quantum
efficiency data to determine V¢ gq and Vg raq in order to
explain the origin of losses in open-circuit voltage for a
series of different solar cell technologies. We measure a
series of solution-processable organic and perovskite solar
cells and compare the obtained values with previously
published data on different inorganic solar cell technolo-
gies. While most inorganic and perovskite solar cells show
voltage losses due to nonradiative recombination, in
organic solar cells the relatively high nonradiative losses
are accompanied by additional losses due to the energy of
photon emission being shifted to much lower energies
relative to the onset of absorption. However, we identify
organic materials such as poly(diketopyrrolopyrrole-
terthiophene) (PDPP3T) [21] where these losses due to
the band offsets at the donor-acceptor interface are small
and where the voltage losses come close to those of the
perovskite solar cell we study.

Finally, we compare the losses due to nonradiative
recombination with device efficiency and show that, over
a wide range of efficiencies for inorganic and perovskite
devices, there exists a roughly linear but fully empirical
relation. In the case of organic solar cells, some devices, for
instance,  thieno[3,4-b]thiophene/benzodithiophene:[6,6]-
phenyl C71-butyric acidmethyl ester (PTB7: PC;;BM) solar
cells [22], still roughly follow the linear trend, while most
organic systems deviate from the trend in terms of efficiency.

II. RADIATIVE LIMIT TO THE
OPEN-CIRCUIT VOLTAGE

The open-circuit voltage is the voltage where recombi-
nation current J,.. and photocurrent J,;, are equal, i.e.,
where

Jree(Voc) = Ipn(Voc)- (1)

Here, the photocurrent is defined as Jy(Vin) =
Ja(Vint) = JL(Vine)s where J4(Vip) and Jp(Viy) are the
dark and light current at the internal voltage V., respec-
tively. In order to determine V¢ from Eq. (1), we need a
relation between the recombination current and V, which is
typically assumed to follow a nonideal diode equation

qvin
Jrec(vint) = ‘]0 |:6Xp <l’ld—k’1t1> - 1:| ’ (2)

where k is Boltzmann’s constant and n;y is the ideality
factor. For radiative recombination between delocalized
states in the conduction and valence band of a semi-
conductor, the ideality factor n;y is one. At open circuit,
there is no current flowing through the external circuit.
Thus, series resistance has no effect, and therefore the
internal voltage V;, equals the open-circuit voltage V.
Inserting Eq. (1) in Eq. (2) and solving for Vo, we arrive at

GkT [TV,
Vo = 1 ln< Ph(] o) | 1). (3)
0

This definition is general for any recombination mecha-
nism controlling J, and ny. For the specific case of
radiative recombination, with Jy = J 4 and n;g = 1 in
Eq. (3), we can write

KT (T (Vocs
Vocra = —In (M + 1>’ (4)
q JO.rad

where J,,(Voc raa) is the photocurrent at open circuit in the
case when there is only radiative recombination.

In the following analysis, we assume that the super-
position principle is valid and replace J,,(Voc) by Jgc in
Egs. (3) and (4) [23]. This facilitates the analysis, because
the short-circuit current is unaffected by series resistance
and so can be measured more accurately than the photo-
current at V. In the case when superposition is invalid
and Jp,(Voc) differs from Jg¢, the approximation intro-
duces a small error typically of the order of kT in deriving
Voc [24]. In order to determine the radiative limit of the
saturation current density J .4 we need to establish a
relation between the emission flux and the applied voltage.
In order to do so, we use an InGaAs photodiode array
coupled to a grating spectrometer to measure electrolumi-
nescence (EL) spectra at various forward biases. However,
we will not be able to determine J 4 solely from the EL
emission spectrum, because that would require an absolute
measurement of the photon density, which is very chal-
lenging. Instead, we can make use of detailed balance
arguments to calibrate the EL emission using a quantum
efficiency measurement as described in the following.
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Under certain specific conditions, in particular, for the
case of linear recombination as seen, e.g., in the base of a
p-n junction and for the case of radiative recombination
between bandlike states (not traps), the EL emission
follows an exponential law of internal voltage V.., which
is defined as the quasi-Fermi-level splitting at the edge of
the space charge region in a p-n junction or Schottky
junction. The reciprocity relation [17]

3t (E) = QB pun(E) exo (1) 1| 5)

relates the excess EL emission 8¢, to the internal voltage.
The excess EL emission is the total emission minus the
blackbody emission Q,(E)¢gg(T) of the solar cell in
equilibrium. The product Q,(E)¢pgg(T) is measurable in
absolute units using a calibrated quantum efficiency setup,
which yields the external solar cell quantum efficiency Q,
as a function of energy E. The spectral blackbody emission
flux density ¢pg is given by

b (E) = 2nE? 1 N 2nE? ox —E
BN 032 [exp(EJKT) — 1]~ h3c2 Pkt
(6)

in units of photons per area, time, and energy interval.
Equation (6) is called a reciprocity relation, because it
connects inverse operation modes of a device with each
other. In this case, the reciprocity describes the relation
between EL emission (light-emitting diode situation) and
photocurrent generation (solar cell situation).

Thus, we can determine J 4 by integrating over the
prefactor of the EL emission in Eq. (5), i.e., via

[Se]

A / Pem(E.V = 0)dE = / 0. (E) s (E)E
0

0

(7)

and Voc g using Eq. (4) with an experimentally deter-
mined Jgc (either using a solar simulator or a quantum
efficiency setup). This definition of Vg, actually
accounts for the influence of nonradiative recombination
on Jgc and so is not truly a radiative limit, but this limit
enables a more straightforward definition of the voltage
losses. In addition, losses in Jg¢ due to recombination at
short circuit would normally have a small effect on V¢ on
Jsc. By using the definition of V¢ g and Vg, it can be
shown that [15,17]

kr (M)

AVocar = Vocird — Voc = ;ln Jree(Voc)
kT

where Qpgp(Voc) represents the light-emitting diode
quantum efficiency Qygp (of the solar cell) measured at
an applied internal voltage equal to the real V¢ of the
device. Note that, in Eq. (8), the voltage loss is independent
of Jgc. This quantity [Qy gp(Voc)] correlates directly with
the loss AVgc,, in open-circuit voltage between the
radiative limit and the real V.

In the SQ theory [1], the quantum efficiency Q. gq is
defined as a step function

Qe.SQ(E) =1, E> Eg’

Q.50(E)=0, E<E,

©)

By substituting the general quantum efficiency Q, in
Egs. (1)~(7) with the step function Q, 5o given by Eq. (9),
we can calculate the saturation current density in the SQ
limit, Jj 5q, and the SQ open-circuit voltage limit Ve gq-
The difference between Voo and the radiative limit
Voc.raa 18 primarily due to the fact that, in the SQ limit,
the band edge is perfectly abrupt, while the radiative limit
[25] can be calculated with an arbitrary band edge that
might be smeared out due to disorder or due to the presence
of charge transfer absorption. Therefore, the difference
between Ve sq and Vo rag can be used as an indicator of
the abruptness of the absorption edge.

III. RECIPROCITY RELATION IN SILICON
AND PEROVSKITE SOLAR CELLS

Figure 1(a) shows the EL spectrum and the external
quantum efficiency of a crystalline Si solar cell (data taken
from Ref. [18]). If the EL spectrum is divided by the
blackbody spectrum at 7. = 300 K, the resulting data set
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FIG. 1. The external quantum efficiency (open circles), the
electroluminescence spectra (open squares), and the quantum
efficiency derived from the EL (solid line) for (a) a crystalline
silicon solar cell taken from Ref. [18] and (b) a MAPIC device.
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has the same energy dependence as the external quantum
efficiency Q,. Thus, Eq. (5) does indeed describe the
spectral shape of the EL correctly in this case, at least in
the range that is experimentally tested in Ref. [18].
Subsequently, Eq. (4) can be used to calculate the radiative
open-circuit voltage using the solid line in Fig. 1 that was
calibrated by using the directly measured quantum effi-
ciency and the measured Jgc. The result for the Si solar cell
in Fig. 1(a) is Vocag = 864 mV, which compares to the
actual open-circuit voltage of Voc = 679 mV. The differ-
ence between Vc.q and Voc is due to nonradiative
recombination and correlates with the LED quantum
efficiency Q;gp in analogy to Eq. (8). This corresponds
to a voltage loss AVocnr = Vocrag — Voc = 185 mV that
is due to radiative recombination being 3 orders of
magnitude lower than actual recombination. An external
LED quantum efficiency in the range of 1073 = 0.1% is
typical for monocrystalline silicon (c-Si) solar cells [19],
with the best cells reaching LED quantum efficiencies close
to 1% at temperatures slightly below 300 K [26].

Figure 1(b) shows the EL spectrum and the external
quantum efficiency of a solution-processed methyl-
ammonium lead-halide CH;NH;Pbl;_,Cl, (MAPIC) per-
ovskite on mesoporous (mp)-Al,O53 scaffold solar cell
[27-29]. Perovskite thin film solar cells are a recently
promoted class of photovoltaic device that have exhibited a
rapid growth in performance to reach a confirmed effi-
ciency of 17.9% [30] and an unconfirmed record of 19.3%
[31] today. However, the efficiency for a single perovskite
solar cell can vary greatly under different current-voltage
scanning conditions, and a significant hysteresis can be
observed. Several hypotheses are proposed to address the
origins of the hysteresis [32]. Herein, we discuss the
influence of the hysteresis effect on the open-circuit voltage
Voc. The MAPIC devices that we study show a high V¢
(about 1.04 V) when the voltage is scanned from forward
bias (FB) to reverse bias (RB) [33]. When we compare
mp-Al,O; MAPIC devices to c-Si solar cells, the subband-
gap quantum efficiency spectrum shows that mp-Al,O5
MAPIC devices have a blueshifted and broader absorption
band edge. A higher-energy absorption onset or a more
abrupt absorption edge will lead to a lower-saturation
current density given by Eq. (7) and therefore a higher
Voc.rag- In mp-Al,O3 MAPIC devices, the effects from the
higher-energy absorption onset and broadened absorption
edge can compensate each other to some extent, but the
combined effect of these two mechanisms gives mp-Al,O5
MAPIC devices a high Ve = 1.317 V, which is
453 mV higher than c¢-Si. This value for V¢ g agrees
roughly with recently published values by Tress et al. [34].
In mp-Al,O; MAPIC devices, the nonradiative voltage loss
AVOC,nr is 280 mV, and the QLED(VOC) for mp—A1203
MAPIC devices calculated from Eq. (8) approaches
2 x 107> = 0.002%. Therefore, nonradiative recombina-
tion is dominant in mp-Al,O; MAPIC devices, and the

LED quantum efficiency is 500 times lower than the best-
performance crystal silicon device. For different types of
perovskite solar cells, there are no observable changes in
the EL shape and position at various injection current
densities. As shown in Supplemental Material (Sec. VI)
[35], this finding implies that the radiative recombination
rate at a given voltage stays the same. Therefore, the drop in
the open-circuit voltage for different scan conditions and
different device structures is related only to changes in
nonradiative recombination rates.

IV. RECIPROCITY RELATION IN ORGANIC
SOLAR CELLS

In organic polymer:fullerene blends, typically a weak
radiative emission is observed in electroluminescence
spectra which is redshifted compared to the emission of
the pristine polymer and fullerene films, which is usually
assigned to the charge transfer (CT) state at the interface
between the polymer and fullerene [5]. These emissive
charge transfer states can also be detected in external
quantum efficiency spectra with a high dynamic range.
Organic molecular semiconductors show a variability in
molecular conformation (e.g., a variation of torsional
angles between monomers in a polymer chain leading to
various conjugation lengths) and in packing (i.e., a varia-
tion in the distance between stacked polymer chains)
leading to energetic disorder [36-38]. The energetic dis-
order is sometimes described with Gaussian profiles or
exponential tails with typical characteristic energies of the
tail Ey, > kT [6,37]. While the presence of disorder and
localized tail states would allow similar discrepancies from
the simple relations given by Eq. (5) as seen for disordered
inorganic semiconductors such as amorphous and micro-
crystalline Si solar cells [39], the reciprocity relation
[Eq. (5)] in polymer:fullerene solar cells is usually still
valid [6,7,40].

Figure 2 shows a series of different polymer:fullerene
systems that have different polymer LUMO levels and
optical band gaps E,,. The optical band gap decreases
from E,, = 1.93 eV for blend devices made with poly(3-
hexylthiophene) (P3HT) [Fig. 2(a)], via Eq, = 1.61 €V for
poly(thieno[3,4-b]thiophene/benzodithiophene)  (PTB7)
based devices [Fig. 2(b)], to E,, = 1.31 eV for PDPP3T
devices [Fig. 2(c)]. The reduction in the optical band gap
leads to a reduction in the energetic difference between the
absorption onset E,, and the CT peak emission but
also between E,y and qVoc. The comparison between
Figs. 2(a) and 2(b) summarizes the main developments in
polymer development for organic photovoltaics in the past
decade. Improvement in solar cell efficiency upon replac-
ing P3HT with PTB7 can be attributed to the depression of
both LUMO and HOMO of PTB7 relative to P3HT such
that the optical gap is reduced, leading to higher J4c, while
at the same time the energy of the CT state is increased,
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FIG. 2. The external quantum efficiency (open circles), the
electroluminescence spectra (open squares), and the quantum
efficiency derived from the EL (solid line) for (a) a
P3HT:PC¢BM device, (b) a PTB7:PC;;BM device, and (c) a
DPP3T:PCgBM solar cell.

leading to both a higher EL peak energy and a higher open-
circuit voltage. In the case of the low band-gap polymer
PDPP3T blended with PCBM [Fig. 2(c)], the difference
between E, and Eg;, has been reduced further to less than
100 meV. Here, however, the efficiency is not improved
relative to PTB7:PCBM due to the lower photocurrent.

V. LOSSES IN OPEN-CIRCUIT VOLTAGE FOR
DIFFERENT SYSTEMS

The energetic loss between E,y and gVoc in organic
heterojunction solar cells can be divided in different ways
into components related to distinct loss mechanisms
[41,42]. One intuitive way to divide the losses is to use
the EL emission peak, representing the CT energy, as
determined by using methods as described [43.,44] to split
the losses between absorption onset and gVoc into two
parts. The part E,—Ecr is related to the offset at the
heterojunction and intuitively relates to the loss due to
exciton dissociation. The second part Ect—qVoc would
then be related to additional losses due to nongeminate
recombination.

The limitation of this way of quantifying energy losses is
that the two parts E,,—Ect and Ecr—qVoc cannot be
identified directly with physical processes. For instance, the
loss E,—Ect also relates to nongeminate recombination

rates (in the same way that any change in the band gap in a
solar cell affects the recombination rate by changing the
equilibrium concentrations of the recombining species of
charge carriers). In addition, in the complete absence of any
heterojunction offsets and the absence of any nonradiative
recombination, the losses do not disappear. Therefore, an
alternative and preferable way of quantifying energy and
voltage losses in (organic or inorganic) solar cells is to use
the detailed balance theory as described in Sec. II. The first
loss, Eqp/q — Voc,sqs equals roughly 250 mV at typical
band gaps relevant for photovoltaics (example Si:
E,=1.12¢eV, Vpocsq =0.874 V). This is comparable
to the open-circuit voltage gain [§Voc = kT/q In(C)]
available under the maximum possible concentration C =
46 000 [45]. This substantial loss is unavoidable for any
solar cell used without concentration and especially for
technologies like organic solar cells that are not intended
for concentrator applications. It is frequently disregarded in
the description of the maximum Vo of organic solar cells.

The second loss, AV s, is the difference between
Vocsq and Ve g, Which is due to replacing the step-
function-like absorptance of the SQ limit with the actual
absorptance of a solar cell material. The Vg is then
reduced relative to Ve gg, because the emission is red-
shifted further relative to the absorption edge. In the case of
organic solar cells, this loss is relatively large when
compared to inorganic solar cells, because the charge
transfer state can lie far below the onset of strong absorption,
depending on the offsets at the heterojunction. While for
¢-Si, the voltage difference between Ve gg and Vo raq 18
only 0.01 V, for P3HT :PC¢;BM, the difference is 0.67 V.

The third loss, AVgc . is the difference between the
radiative open-circuit voltage limit V¢ g and actual open-
circuit voltage V¢ [defined in Eq. (9)]. In an actual solar
cell, nonradiative recombination is caused by the presence
of defects and impurities that act as recombination centers
and is enhanced by low mobility.

Table I lists the values of E,, and Ef as well as the
various Ve values (SQ limit, radiative limit, and actual
measured values) for the set of organic and inorganic
devices discussed here. Among all the materials listed in
Table I, the inorganic materials all have a relatively low
nonradiative voltage loss AV ¢ ,,, in the range 0.04-0.21 V.
This is partly due to the fact that inorganic materials with
large nonradiative recombination losses such as amorphous
Si do not follow the reciprocity relations due to the
presence of broad tails of localized states within the band
gap and could therefore not be analyzed by using V¢ ;g as
described above [39]. Among the investigated materials,
direct crystalline semiconductors with high luminescence
efficiency like GaAs have the lowest AV ¢ ., about 0.04 V.
Slightly higher losses are found for materials that are either
indirect semiconductors such as monocrystalline silicon
(c-Si) or direct but polycrystalline semiconductors such as
Cu(In, Ga)Se, (CIGS) with values in the range of 200 mV.
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TABLE 1.

Voltage loss analysis on different material systems investigated this study. All values are in the unit of volts.

Material system

Eoi/q Vocso Vocraa Voo EeL/q Eopi/q—Vocsa AVocabs AVocar Eopt/q9—Voc EeL/q—Voc

¢-Si [18] 1.12 087 086 0.68 0.98
CIGS [18] 1.18 096 095 0.74 1.18
GaAs [50] 142 1.154 1.146 1.11 1.138
MAPI (evap) [51] 1.61 1332 1.330 1.08 1.60

mp-Al,O; MAPIC (sol p) 1.61 133 132 104 1.60
mp-TiO, MAPIC (sol p)  1.61 133 132 084 1.60
Inverted MAPI (sol p) 161 133 132 090 1.60

P3HT:PC¢, BM 193 163 096 058 0.87
PTB7:PC;;BM 161 133 113 074 1.08
PDPP3T: PC,, BM 131 106 104 070 125
PCDTBT:PCq; BM 1.82 153 125 090 1.21
IDTBT:PC;,BM 160 132 1.4 071 LI19
BTTDPP:PC,;BM 137 111 108 068 115
Si-PCPDTBT:PCe,BM 170 142 1.04 0.60 0.99
APFO3:PCq; BM 188 159 138 099 134

MDMOPPV :PC¢ BM 215 183 122 085 122

0.25 0.010 0.18 0.44 0.30
0.22 0.011 0.21 0.44 0.44
0.27 0.008 0.04 0.31 0.31
0.28 0.002 0.25 0.53 0.52
0.28 0.01 0.28 0.57 0.56
0.28 0.01 0.48 0.77 0.76
0.28 0.01 0.42 0.71 0.70
0.30 0.67 0.38 1.35 0.29
0.28 0.20 0.39 0.87 0.34
0.25 0.02 0.34 0.61 0.55
0.29 0.28 0.35 0.92 0.31
0.28 0.18 0.43 0.89 0.48
0.26 0.03 0.40 0.69 0.47
0.28 0.38 0.44 1.10 0.39
0.29 0.21 0.39 0.89 0.35
0.32 0.61 0.37 1.30 0.37

The mp-Al,O0; MAPIC solar cell, which possesses a
nanocrystalline absorber, has a nonradiative loss slightly
higher than ¢-Si and CIGS of about 0.29 V. For the
investigated polymer:fullerene systems, the nonradiative
voltage losses are relatively high but surprisingly similar in
the range of 0.34-0.44 V.

Figures 3 and 4 present the data from Table I graphically
for a few representative solar cell materials. Figure 3 uses
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FIG. 3. (a) Comparison of the optical band gap, peak emission
of electroluminescence Ey; , and actual open-circuit voltage V¢
for crystalline silicon, P3HT:PC¢ BM, PTB7:PC; BM,
PDPP3T:PC4qBM, and a CH3;NH;Pbl;_ Cl, (MAPIC).
(b) The energetic differences between the quantities plotted in (a).

the more intuitive way of splitting the losses using the EL
peak, while Fig. 4 shows the data by using Vg and
Voc.raa as reference points.

In Fig. 3, on first sight we observe the expected difference
between “excitonic” heterojunction solar cells and classical
inorganic solar cells. In the typical organic heterojunction
solar cells like P3HT:PCqBM [poly(3-hexylthiophene:
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circuit voltage Ve for solar cells with absorbers made from
crystalline silicon, P3HT:PC¢BM, PTB7:PC;BM,
PDPP3T:PCq BM and a MAPIC. (b) The differences between
the quantities plotted in (a).
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[6,6]-phenyl  C61-butyric  acidmethyl ester] and
PTB7:PC;;BM [22,27], the bar for the difference AE-g =
Eqp — Egy, is huge compared to the case of inorganic solar
cells, where this loss is negligible. Perovskite solar cells
(MAPIC) behave clearly like inorganic solar cells. Because of
the abruptness of the MAPIC band gap, the loss AE is even
smaller than for the indirect semiconductor Si. However,
there is also one polymer:fullerene blend (namely,
PDPP3T: PCy BM) that—using these metrics—behaves like
an inorganic semiconductor. Here, the EL peak is even closer
to the absorption onset than for crystalline Si. While
PDPP3T:PC¢BM is known to be the polymer:fullerene
blend with the smallest total difference E,y —¢qVoc, it
appears to have a comparably large amount of nongeminate
recombination losses. The same seems to hold true for
MAPIC. For the material systems we investigate here, the
EL peak position shows no or only a negligible shift with bias
voltage. Therefore, the EL emission does not seem to be
affected by the filling of band tail states [6]. Thus, the
comparison between EL emission from various materials
is valid. When using the detailed balance theory, the situat-
ion is slightly different. Figure 4 shows that, while
PDPP3T:PCgBM still has the smallest losses in terms of
Voc.so = Voc rad» also the losses due to nonradiative recom-
bination (0.34 V) are smaller as compared to P3HT and
PTB7. This is consistent with the fact that PDPP3T : PCq; BM
has reasonable fill factors of 0.67 [21] and areasonable charge
carrier lifetime [46-48]. Also in the case of mp-Al,O4
MAPIC, we see that the losses due to nonradiative recombi-
nation are clearly not exceeding those of typical organic solar
cell materials as one might have guessed from Fig. 3.
Among the three polymer:fullerene systems, PTB7, the
polymer with the intermediate LUMO-LUMO offset, has
the highest efficiency of 9.2% reported by He et al. [22].
For P3HT : PC¢; BM, the LUMO-LUMO offset is too large,
resulting in a big voltage loss between the optical band gap
and Vo g, While for PDPP3T, the energetic offset is less
than 100 meV. Although PDPP3T has improved voltage
losses relative to other organic systems, it shows relatively
low photocurrent quantum efficiency leading to similar
power conversion efficiency to P3HT:PCq BM. PTB7 is
one of the polymers with the highest efficiency published to
date, and it benefits from a LUMO-LUMO offset that
results in a good compromise between charge separation
and V. For the case of P3BHT : PCBM, as shown in Fig. 2,
we observe a large voltage loss AV e as due to the large
offset between the EL peak position and polymer absorp-
tion onset. In Supplemental Material (Sec. V) [49], we
show how to further split this offset into contributions due
to the difference between absorption onset and CT state and
additional losses due to the smeared absorption edge of the
polymer. As expected, the loss of 670 mV largely originates
from the energy difference between absorption onset and
CT state (630 mV) and only to a small degree from the
smeared absorption onset of the polymer (40 mV).

So far, we discussed only the open-circuit voltage of
different solar cell technologies and how the reduction of
Voc relative to its thermodynamic limit can be understood.
It is worthwhile to test whether there is a relation between
the losses discussed so far and the efficiency of the solar
cells rather than only the Vc. The most important loss
mechanism discussed so far is the loss due to nonradiative
recombination. This loss will affect not only V¢ but also
the FF and Jgc of solar cells, and therefore it should
correlate with efficiency. If a solar cell was close to its
optimum, then we would expect charge collection to be
efficient and the Jgc and FF therefore to be quite close to
their limit. The main loss should then be due to the V¢
being reduced relative to the thermodynamic limit. As
defined by Eq. (8), the nonradiative loss can also be
expressed by using the LED quantum efficiency Qjgp.

Therefore, we plot in Fig. 5 the efficiency normalized to
the SQ limit versus the logarithm of the LED quantum
efficiency, Q; gp, Which is proportional to the voltage loss
due to nonradiative recombination. We plot a number of
O1ep and normalized PCE values from OPV, perovskite,
and inorganic solar cells. The values for Q; gp obtained for
different solar cell technologies lie in the range 10~ to 0.22
and the corresponding nonradiative voltage losses are

nonradiative voltage loss AV,
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0.8

3
<
=
<
>
o
o
.g 0.6 b b
= E=13¢gV- ALOFB-RE o~ 1
o e
- 04F e u coevap T
9 inv ? " o PTBZ:PC,BM ]
g 02t TO, A .7 ’ O A0, steady state 4
= -7 ° o ®
o o @° ¢ polymerPCBM
Z - L]

0.0 ol 22 sl ol @ oiund 2 ol s sl und i

10 10®  10°  10*  10? 10°
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FIG. 5. Power conversion efficiency for different solar cell
technologies normalized to the Shockley-Queisser limits as a
function of LED quantum efficiency Qpgp both taken from
literature and collected in this work. The dotted lines define the
theoretical limits of various Qpgp at two different optical band
gaps: 1.6 and 1.3 eV. The top x axis is the nonradiative voltage
loss over the range of O gp, referring to Eq. (8). The data points
for inorganic solar cells are shown in red squares. Different
perovskite fabrication technologies are shown in green. Open
green and circle points represents solution-processed perovskite
devices made with MAPIC on mp-TiO, and mp-Al,O5 films,
respectively. The open green diamond point is the solution-
processed inverted MAPI device using PEDOT:PSS and PCBM
interlayers. The solid square point is the coevaporated MAPI
taken from Ref. [40]. Different organic solar cells are shown in
blue. PTB7:PC;;BM, the OPV system with the highest PCE, is
shown as the open blue circle. The dashed line is a guide to the
eye representing the approximate experimental trend.

014020-7



JIZHONG YAO et al.

PHYS. REV. APPLIED 4, 014020 (2015)

shown on the top x axis, referring to Eq. (8). The values for
the inorganic solar cells are taken from the list summarized
by Green [50] and from Ref. [18], respectively. The data for
organic solar cells are collected in this work and listed in
Table 1. Values for an evaporated perovskite solar cell are
taken from a recent publication by Tvingstedt et al. [51].
The absolute value of Qpgp for thermal-evaporated
CH;NH;Pbl; (MAPI) samples is experimentally measured.
The Qpgp values for the GaAs device from Green’s work
[50] and the other systems reported by us are derived from
the spectra of EL and EQE combined with the actual open-
circuit voltage using Eq. (8). In terms of accuracy of
calculated voltage losses, the voltage-dependent photocur-
rent can lead to small errors on the order of k7, and
estimation of errors is discussed in more detail in
Supplemental Material (Sec. 1V)[24]. We also show per-
ovskite devices fabricated by three different solution-proc-
ess based routes. Of these, the device made by single step
deposition on mesoporous-TiO, [27] and the device made
with PEDOT:PSS and PCBM interlayers in an inverted
structure show little hysteresis in current-voltage (JV)
measurements. Therefore, for these two cases, we show
only the data taken from steady-state JV scanning con-
ditions in Fig. 5. For the third type of perovskite device,
made by single step deposition on mesoporous-Al,Os,
strong hysteresis is seen in the JV measurement.
Therefore, two data points taken under forward to reverse
bias (FB-RB) scan and steady-state condition are plotted in
Fig. 5 for this case. Details of current-voltage (JV)
measurements of perovskite solar cells, including the
“steady-state” condition, are provided in Supplemental
Material, and more detailed measurement results are found
in Fig. S5 [33].

The data points in Fig. 5 show the expected general trend
that high Q;gp values also lead to high normalized
efficiencies. A slightly surprising factor is that the normal-
ized efficiencies of inorganic, solution-processed MAPI
and MAPIC perovskite, and the best OPV solar cells show
a simple, approximately linear relation to In(Q; gp), shown
as the dashed line in Fig. 5. This linear relation between
efficiency and In(Q; gp) indicates that, for mature inorganic
systems and for the best OPV solar cells, efficiency could
be increased by increasing Q) gp. Any change in Q) gp has
two direct effects on efficiency. It directly correlates with
Voc via Eq. (4), and any reduction in V¢ will reduce the
maximum available FF [52]. Thus, one can predict the
effect of Q;gp on the power conversion efficiency by just
taking changes in Ve and FF into account. These
predictions are shown by the dotted lines in Fig. 5 for
two representative band gaps. It is obvious that the
empirical trend features additional losses in efficiency that
are not captured by that approach. These include charge
collection losses, series resistance, and reflection losses that
will further reduce the FF and the short-circuit current.
These losses may cause the empirical result to be only 90%

of the SQ limit at Q; gp = 1. Within the group of organic
solar cells, the LED quantum efficiency is not a good
indicator of quality, which means that here nonradiative
recombination is not the only problem, but instead varia-
tions in the losses, e.g., due to the smeared-out absorption
edge (i.e., variations in Ve sg — Voc,raa) OF due to gemi-
nate recombination, are more dominant as seen also in
Fig. 4(b). PDPP3T:PC4 BM is again a good example,
because it should, in general, be a very promising material
showing low voltage losses in every respect, but it still fails
to achieve efficiencies > 4% because of the low Q, at short
circuit. This analysis suggests that the low Q, results from
factors other than nonradiative recombination, for example,
geminate recombination.

Compared to the theoretical lines (dotted), the empirical
line (dashed) is lower in magnitude with a steeper gradient.
For the technologies on the empirical line with higher Q; gp
values, such as GaAs and c¢-Si solar cells, the efficiencies
deviate less from the theoretical value, and these photo-
voltaic technologies tend to be commercially mature.
However, new technologies, such as OPV and perovskites,
have lower Q;gp values, and the efficiencies are often
substantially below the theoretical limits. The low Q;gp
indicates that OPV and perovskites still suffer from higher
nonradiative recombination rates than the shown inorganic
solar cells. The large offset between the theoretical and
empirical efficiencies implies that these new and less mature
technologies also suffer large losses from other factors such
as charge collection, series resistance, parasitic absorption,
and reflection, which are not distinguished in this analysis.

VI. CONCLUSION

In summary, we discuss luminescence-based methods to
analyze voltage losses in solution-processed solar cells and
provide an overview over the data obtained from a series of
organic and perovskite solar cells that we compare with
published data on classical inorganic solar cells. In order to
explain which physical mechanism reduces the open-circuit
voltage relative to its thermodynamic limits, we use differ-
ent reference points, namely, the open-circuit voltage
Vocso in the SQ limit (step-function-like absorptance
and radiative recombination only) and the radiative open-
circuit voltage (arbitrary absorptance and radiative recom-
bination only). This analysis is useful to understand the
voltage losses in an actual solar cell, as the voltage
differences between the reference points and actual Ve
can be attributed to specific physical mechanisms. The loss
between Vocso and Vocrg is due to the smeared-out
absorption edge and depends, for instance, on the amount of
disorder in a semiconductor or on the LUMO-LUMO offset
at the donor-acceptor heterointerface. The difference
between Ve g and Vg is caused by nonradiative recom-
bination and is directly related to the LED quantum
efficiency of the solar cell. In comparison with state-of-
the-art inorganic and MAPIC solar cells, many organic solar
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cells show a high voltage loss due to the broadened
absorption edge. However, there exist some materials such
as PDPP3T:PC¢BM that have voltage losses that are
comparable to the losses in inorganic or perovskite devices.
However, currently the materials with the lowest losses in
Voc do not show the highest efficiencies. Therefore, we
need to understand those materials and establish whether it
is possible to combine minimum losses due to the hetero-
junction and due to nonradiative recombination with high
external quantum efficiencies. We herein also highlight an
empirical linear relation between the efficiency normalized
to the Shockley-Queisser limit and the logarithm of the LED
quantum efficiency in different photovoltaic technologies.
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