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[11 The ensemble Kalman filter (EnKF) is coupled with upscaling to build an aquifer model
at a coarser scale than the scale at which the conditioning data (conductivity and piezometric
head) had been taken for the purpose of inverse modeling. Building an aquifer model at the
support scale of observations is most often impractical since this would imply numerical
models with many millions of cells. If, in addition, an uncertainty analysis is required
involving some kind of Monte Carlo approach, the task becomes impossible. For this reason,
a methodology has been developed that will use the conductivity data at the scale at which
they were collected to build a model at a (much) coarser scale suitable for the inverse
modeling of groundwater flow and mass transport. It proceeds as follows: (1) Generate an
ensemble of realizations of conductivities conditioned to the conductivity data at the same
scale at which conductivities were collected. (2) Upscale each realization onto a coarse
discretization; on these coarse realizations, conductivities will become tensorial in nature
with arbitrary orientations of their principal components. (3) Apply the EnKF to the
ensemble of coarse conductivity upscaled realizations in order to condition the realizations to
the measured piezometric head data. The proposed approach addresses the problem of how
to deal with tensorial parameters, at a coarse scale, in ensemble Kalman filtering while
maintaining the conditioning to the fine-scale hydraulic conductivity measurements. We
demonstrate our approach in the framework of a synthetic worth-of-data exercise, in which
the relevance of conditioning to conductivities, piezometric heads, or both is analyzed.
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1. Introduction

[2] In this paper we address two problems, each of which
has been the subject of many works, but which have not
received as much attention when considered together: upscal-
ing and inverse modeling. There are many reviews on the
importance and the methods of upscaling [e.g., Wen and
Gomez-Hernandez, 1996; Renard and de Marsily, 1997;
Sanchez-Vila et al., 2006], and there are also many reviews
on inverse modeling and its relevance for aquifer character-
ization [e.g., Yeh, 1986; McLaughlin and Townley, 1996;
Zimmerman et al., 1998; Carrera et al., 2005; Hendricks
Franssen et al., 2009; Oliver and Chen, 2011; H. Zhou,
J. J. Gomez-Hernandez, and L. Li, Inverse methods in hydro-
geology: Evolution and future trends, submitted to Journal
of Hydrology, 2011]. Our interest lies in coupling upscaling
and inverse modeling to perform an uncertainty analysis of
flow and transport in an aquifer for which measurements
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have been collected at a scale so small that it is prohibitive,
if not impossible, to perform directly the inverse modeling.
[3] The issue of how to reconcile the scale at which con-
ductivity data are collected and the scale at which numerical
models are calibrated was termed “the missing scale” by
Tran [1996], referring to the fact that the discrepancy between
scales was simply disregarded; data were collected at a fine
scale, the numerical model was built at a much larger scale,
each datum was assigned to a given block, and the whole
block was assigned the datum value, even though the block
may be several orders of magnitude larger than the volume
support of the sample. This procedure induced a variability,
at the numerical block scale, much larger than it should be,
while at the same time some unresolved issues have prevailed
like what to do when several samples fell in the same block.
[4] To the best of our knowledge, the first work to
attempt the coupling of upscaling and inverse modeling is
the upscaling-calibration-downscaling-upscaling approach
by Tran et al. [1999]. In their approach, a simple averaging
over a uniformly coarsened model is used to upscale the
hydraulic conductivities. Then, the state information (e.g.,
dynamic piezometric head data) is incorporated in the
upscaled model by the self-calibration technique [Gomez-
Hernandez et al., 1997]. The calibrated parameters are
downscaled back to the fine scale by block kriging [Behrens
et al., 1998] resulting in a fine-scale realization conditional
to the measured parameters (e.g., hydraulic conductivities).
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Finally, the downscaled conductivities are upscaled using a
more precise scheme [Durlofsky et al., 1997; Li et al.,
2011a] for prediction purposes. The main shortcoming of
this approach is that the inverse modeling is performed on
a crude upscaled model, resulting in a downscaled model
that will not honor the state data accurately. Tureyen and
Caers [2005] proposed the calibration of the fine-scale con-
ductivity field by gradual deformation [Hu, 2000; Capilla
and Llopis-Albert, 2009], but instead of solving the flow
equation at the fine scale they used an approximate solution
after upscaling the hydraulic conductivity field to a coarse
scale. This process requires an upscaling for each iteration
of the gradual deformation algorithm, which is also time-
consuming, although they avoid the fine-scale flow solution.
More recently, an alternative multiscale inverse method [Fu
et al., 2010] was proposed. It uses a multiscale adjoint
method to compute sensitivity coefficients and reduce the
computational cost. However, like traditional inverse meth-
ods, the proposed approach requires a large amount of CPU
time in order to get an ensemble of conditional realizations.
In our understanding, nobody has attempted to couple
upscaling and the ensemble Kalman filtering (EnKF) for
generating hydraulic conductivity fields conditioned to
both hydraulic conductivity and piezometric head measure-
ments. Only the work by Peters et al. [2010] includes some
components common with our work. This work describes
the Brugge Benchmark Study in which a fine-scale perme-
ability field was generated and then it was upscaled onto a
coarser model using diagonal tensor upscaling. The result-
ing coarse model was provided to the different teams par-
ticipating in the benchmark exercise, some of which used
the EnKF for history matching. We have chosen the EnKF
algorithm for the inverse modeling because it has been
shown that it is faster than other alternative Monte Carlo—
based inverse modeling methods (see for instance the work
by Hendricks Franssen and Kinzelbach [2009] who show
that the EnKF was 80 times faster than the sequential self-
calibration in a benchmark exercise and nearly as good).

[5] Our aim is to propose an approach for the stochastic
inverse modeling of an aquifer that has been characterized
at a scale at which it is impractical to solve the inverse
problem because of the large number of cells needed to dis-
cretize the domain. We start with a collection of hydraulic
conductivity and piezometric head measurements, taken at a
very small scale, to end with an ensemble of hydraulic con-
ductivity realizations, at a scale much larger than the one at
which data were originally sampled, all of which are condi-
tioned to the measurements. This ensemble of realizations
will serve to perform uncertainty analyses of both the pa-
rameters (hydraulic conductivities) and the system state var-
iables (piezometric heads, fluxes, concentrations, or others).

[6] The rest of the paper is organized as follows. Section
2 outlines the coupling of upscaling and the EnKF, with
emphasis in the use of arbitrary hydraulic conductivity ten-
sors in the numerical model. Next, in section 3, a synthetic
example serves to validate the proposed method. Then, in
section 4, the results are discussed. The paper ends with a
summary and conclusions.

2. Methodology

[7] Hereafter, we will refer to a fine scale for the scale at
which data are collected, and a coarse scale, for the scale at
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which the numerical models are built. The methodology
proposed can be outlined as follows.

[8] 1. At the fine scale, generate an ensemble of realiza-
tions of hydraulic conductivity conditioned to the hydraulic
conductivity measurements.

[o] 2. Upscale each one of the fine-scale realizations
generated in the previous step. In the most general case, the
upscaled conductivities will be full tensors in the reference
axes.

[10] 3. Use the ensemble of coarse realizations with the
EnKF to condition (assimilate) on the measured piezomet-
ric heads.

2.1. Generation of the Ensemble of Fine-Scale
Conductivities

[11] The first step of the proposed methodology makes
use of geostatistical tools already available in the literature
[e.g., Gomez-Herndndez and Srivastava, 1990; Deutsch and
Journel, 1998; Strebelle, 2002 ; Mariethoz et al., 2010]. The
technique to choose will depend on the underlying random
function model selected for the hydraulic conductivity:
multi-Gaussian, indicator based, pattern based, or others. In
all cases, the scale at which these fields can be generated is
not an obstacle, and the resulting fields will be conditioned
to the measured hydraulic conductivity measurements (but
only to hydraulic conductivity measurements). These fields
could have millions of cells and are not suitable for inverse
modeling of groundwater flow and solute transport.

2.2. Upscaling

[12] Each one of the realizations generated in the previ-
ous step is upscaled onto a coarse grid with a number
of blocks sufficiently small for numerical modeling. We
use the flow upscaling approach by Rubin and Gomez-
Hernandez [1990], who after spatially integrating Darcy’s
law over a block V,

1 _ b l
V/quV— K (V/VVth) (1)

define the block conductivity tensor (K) as the tensor that
best relates the block average head gradient to the block av-
erage specific discharge vector within the block. In this
expression, q and Vh are the specific discharge vector and
the piezometric head gradient, respectively, at the fine scale
within the block; therefore, to perform the two integrals,
we need to know the specific discharge vectors and the pie-
zometric head gradients at the fine scale within the block.
These values could be obtained after a solution of the flow
problem at the fine scale [e.g., White and Horne, 1987], but
this approach beats the whole purpose of upscaling, which
is to avoid such fine-scale numerical simulations. The alter-
native is to model a smaller domain of the entire aquifer
enclosing the block being upscaled. In such a case, the
boundary conditions used in this reduced model will be dif-
ferent from the boundary conditions that the block has in
the global model, and this will have some impact on the
fine-scale values of Vh and q. The dependency of the heads
and flows within the block on the boundary conditions
is the reason why the block upscaled tensor is referred
to as nonlocal [e.g., Indelman and Abramovich, 1994,
Guadagnini and Neuman, 1999].
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[13] For the flow upscaling we adopt the so-called Lapla-
cian-with-skin method on block interfaces as described by
Gomez-Hernandez [1991] and recently extended to three
dimensions by Zhou et al. [2010]. The two main advan-
tages of this approach are that it can handle arbitrary full
conductivity tensors, without any restriction on their princi-
pal directions; and that it upscales directly the volume
straddling between adjacent block centers, which, at the
end, is the parameter used in the standard finite difference
approximation of the groundwater flow equation (avoiding
the derivation of this value by some kind of averaging of
the adjacent block values). Once the interblock conductiv-
ities have been computed, a specialized code capable of
handling interblock tensors is necessary. For this purpose,
the public domain code FLOWXYZ3D [Li et al., 2010],
has been developed. The details of the upscaling approach,
the numerical modeling using interblock conductivity ten-
sors, and several demonstration cases are given by Zhou
et al. [2010] and Li et al. [2010, 2011a, 2011b]. The result-
ing upscaled interblock tensors produced by this approach
are always of rank two, symmetric and positive definite.

[14] The Laplacian-with-skin method on block interfaces
for a given realization can be briefly summarized as
follows.

[15] 1. Overlay a coarse grid on the fine-scale hydraulic
conductivity realization.

[16] 2. Define the interblock volumes that straddle any
two adjacent blocks.

[17] 3. For each interblock, do the following: (1) isolate
the fine-scale conductivities within a volume made up by
the interblock plus an additional “border ring” or “skin”
and simulate flow, at the fine scale, within this volume. (2)
As explained in many studies [e.g., Gomez-Hernandez,
1991; Sanchez-Vila et al., 1995, 2006; Zhou et al., 2010;
Li et al., 2011a], there is a need to solve more than one
flow problem in order to being able of identifying all com-
ponents of the interblock conductivity tensor. (3) From the
solution of the flow problems, use equation (1) to derive
the interblock conductivity tensor.

[18] 4. Assemble all interblock tensors to build a realiza-
tion of upscaled hydraulic conductivity tensors at the
coarse scale.

[19] The above procedure has to be repeated for all real-
izations, ending up with an ensemble of realizations of
interblock conductivity tensors.

2.3. The EnKF With Hydraulic Conductivity Tensors

[20] Extensive descriptions of the EnKF and how to
implement it have been given, for instance, by Burgers
et al. [1998], Evensen [2003], Naevdal et al. [2005], Chen
and Zhang [2006], and Aanonsen et al. [2009]. Our contri-
bution, regarding the EnKF, is how to deal with an ensem-
ble of parameters that, rather than being scalars, are tensors.
After testing different alternatives, we finally decided not to
use the tensor components corresponding to the Cartesian
reference system as parameters within the EnKF, but to use
some of the tensor invariants, more precisely, the magni-
tude of the principal components and the angles that define
their orientation. The rationale behind choosing the princi-
pal components is precisely their independence on the ref-
erence system, they are the intrinsic values characterizing
the conductivity in a given point, besides the fact that to
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ensure that the resulting tensor is positive definite it is only
necessary to keep the principal components positive, whereas
when working with the tensor in an arbitrary system, enforc-
ing the positive definiteness is more complicated.

[21] For the example discussed later we will assume a
two-dimensional domain, with hydraulic conductivity ten-
sors varying in space K = K(x) of the form

K ny
Ky Ky

K= : 2

Each conductivity tensor is converted onto a triplet
{Knaxs Kmin, 0}, with K, being the largest principal com-
ponent, K,,;,, the smallest one, and 6, the orientation, of the
maximum principal component with respect to the x axis
according to the following expressions [Bear, 1972]:

1/2
mec == 2 = |:< = ) yy) (ny)2:| )
K + K K. — K, 2 2

X 4 XX 3

Jimin - - 2 - ( 2 yy> (ny)z:| ) ( )

6= 1arctan( 2Ky )
2 K. —-K, '

[22] After transforming all conductivity tensors obtained
in the upscaling step onto their corresponding triplets, we
are ready to apply the EnKF. We will use the EnKF imple-
mentation with an augmented state vector as discussed
below; this is the standard implementation used in petro-
leum engineering and hydrogeology, although alternative
implementations and refinements of the algorithm could
have been used (see Aanonsen et al. [2009] for a review).

[23] Using the EnKF nomenclature, the state of the sys-
tem is given by the spatial distribution of the hydraulic
heads, the state transition equation is the standard flow
equation describing the movement of an incompressible
fluid in a fully saturated porous medium [Bear, 1972;
Freeze and Cherry, 1979] (in two dimensions for the exam-
ple considered later), and the parameters of the system are
the spatially varying hydraulic conductivities (the storage
coefficient is assumed to be homogeneous and known, and
therefore, it is a parameter not subject to filtering), i.e.,

Y =/ (Xk-1, Yi-1), 4)

where Y is the state of the system at time step #;, f repre-
sents the groundwater flow model (including boundary con-
ditions, external stresses, and known parameters), and X;_|
represents the model parameters after the latest update at
time t4_1.

[24] The EnKF algorithm will proceed as follows.

[25] 1. Perform the forecast. Equation (4) is used to fore-
cast the system states for the next time step given the latest
state and the latest parameter update. This forecast has to
be performed in all realizations of the ensemble.

[26] 2. Perform the analysis. At the forecasted time step,
new state observations are available at measurement loca-
tions. The discrepancy between these state observations
and the forecasted values will serve to update both the
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parameter values and the system state at all locations in the
aquifer model as follows.

[27] 1. Build the joint vector Wy, including parameters
and state values. This vector can be split into as many
members as there are realizations in the ensemble, with

3

being the jth ensemble member at time 7. Specifically, X
(for a realization) is expressed as

X = [(1n Knax, In Kiin, 0)1 y ey (]n Konax, In Konin, H)N,,]Ta (6)

where N, is the number of interfaces in the coarse numeri-
cal model. Notice that the logarithm of the conductivity
principal components is used since their distribution is,
generally, closer to Gaussian than that of the conductivities
themselves, (recall that the EnKF is optimal for multi-
Gaussian distributions [Evensen, 2003 ; Zhou et al., 2011;
A. Schoniger, W. Nowak, and H. J. Hendricks Franssen,
Parameter estimation by ensemble Kalman filters with
transformed data: Approach and application to hydraulic
tomography, submitted to Water Resources Research,
2011)).

[28] ii. The joint vector W, is updated, realization by
realization, by assimilating the observations (Yibs):

Ul =W+ GV + e —HTY ), o)

where the superscripts a and f denote analysis and forecast,
respectively; € is a random observation error vector that in
this case, also takes into account the fact that the piezomet-
ric head measurements are taken at a scale smaller than the
forecasted values; to account for this discrepancy, the dis-
persion variance of the fine-scale piezometric head within
the block is added to the observation error (this dispersion
variance has to be determined during the upscaling step by
analyzing the within-block variance of the fine scale
heads). H is a linear operator that interpolates the fore-
casted heads to the measurement locations, and, in our
case, is composed of 0’s and 1’s since we assume that
measurements are taken at block centers. Therefore, equa-
tion (7) can be rewritten as

U =W+ Gi(YP™ +e— YY), ®)

where the Kalman gain Gy, is given by
G = P{H (HP/H" +R,)™, ©)

where R, is the measurement error covariance matrix, and
Pi contains the covarlances between the different compo-
nents of the state vector. P/, ¢ is estimated from the ensemble
of forecasted states as

(10)

where N, is the number of realizations in the ensemble, and
the overbar denotes average through the ensemble.
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[29] In the implementation of the algorlthm it is not nec-
essary to calculate expllcltly the full covariance matrix P
since the matrix H is very sparse, and consequently, the
matrices PJ;HT and HP’ZHT can be computed directly at a
strongly reduced CPU cost.

[30] 3. The updated state becomes the current state, and
the forecast-analysis loop is started again.

[31] The question remains whether the updated conductiv-
ity tensor realizations preserve the conditioning to the fine-
scale conductivity measurements. In standard EnKF, when no
upscaling is involved and conductivity values are the same in
all realizations at conditioning locations, the forecasted cova-
riances and cross covariances involving conditioning points
are zero, and so is the Kalman gain at those locations; there-
fore, conductivities remain unchanged through the entire
Kalman filtering. In our case, after upscaling the fine-scale
conditional realizations, the resulting ensemble of hydraulic
conductivity tensor realizations will display smaller variances
(through the ensemble) for the tensors associated with interfa-
ces close to the fine-scale measurements than for those far
from the measurements. These smaller variances will result in
a smaller Kalman gain in the updating process at these loca-
tions, and therefore will induce a soft conditioning of the
interblock tensors on the fine-scale measurements.

[32] The proposed method is implemented in the C soft-
ware Upscaling-EnKF3D, which is used in conjunction
with the finite difference program FLOWXYZ3D [Li et al.,
2010] in the forecasting step. From an operational point of
view, the proposed approach is suitable for parallel compu-
tation both in terms of upscaling and EnKF since each en-
semble member is treated independently, except for the
computation of the Kalman gain.

2.4. CPU Time Analysis

[33] Without a CPU analysis, we can argue that the cou-
pling of upscaling with the EnKF is of interest because it
allows to analyze problems that otherwise could not be
handled simply because the size of the numerical model is
not amenable to the available computer resources. In our
case, with our resources, we could not run any flow model
with more than 10® nodes. However, even for those models
for which we could run the fine-scale flow simulation, the
CPU time savings associated to the upscaling approach are
considerable, and essential for fine-scale models with more
than a few tens of thousands of nodes.

[34] We performed a conservative analysis of CPU time
savings in which only the CPU time spent in the flow simula-
tions, that is, in the upscaling step and the forecasting step of
the EnKF, is considered. The savings will be larger had the
time needed for the filtering step, that is, to estimate the en-
semble covariance and the Kalman gain been considered. We
run several flow simulations with MODFLOW for model sizes
ranging from 10* to 107 nodes, for different realizations of the
hydraulic conductivities with the same statistical characteris-
tics as the examples that will be shown later. The regression of
the CPU times with respect to the number of nodes is shown
in Figure 1 and gives the following expression:

t=10"N'32, 11)

where ¢ is the CPU time in seconds needed by MODFLOW
to run a model with N nodes. This expression is consistent
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with the standard results from numerical analysis that prove
that to solve a system of linear equations by Gauss elimina-
tion, the time is proportional to the cube of the number of
equations [A/laire and Kaber, 2008, p. 72] and that to solve
a tridiagonal system of equations, the time is proportional
to the number of equations; in our case, since the equations
to solve make up a sparse linear system, the time needed to
solve them should be proportional to the number of equa-
tions to a power between 1 and 3. Using this empirical
expression, we can estimate the time needed, just for the
flow runs, as a function of the upscaling ratio (number of
cells in the upscaling block). Considering that the Lapla-
cian-with-skin approach is used with a skin of width equal
to half the block size, and with four runs of the local flow
model to determine the block upscaled value, the total CPU
time to do the upscaling and run a transient model for N,
time steps is given by
tcoarse - 10_5(NBCSM”’@"blOCkSNIEé;%acg + NZN[}jchks)y (12)
where Npc, are the number of boundary conditions used to
run the local flow model for the upscaling of each block,
Niioers 18 the number of blocks in the coarse model, N;,e,pi0cks
is the number of interblocks to upscale (roughly equal to
2Npiocks)» and Npgpjace i the number of cells in the local flow
model (including the skin). The expression contains a first
term that measures the time needed to perform the upscaling,
and a second one with the time needed to run the transient
flow model.
[35] The time needed to solve the same flow problem at
the fine scale would be
e = 10-5N,N132

cells >

(13)

with N,.;s being the number of cells of the model.
[36] Figure 2 shows a comparison of the CPU times
needed for the fine-scale model and for the upscaled model

Regression of CPU time versus number of cells from several runs of MODFLOW on hetero-

as a function of the upscaling ratio for a single time step
and for fine scale models with numbers of cells ranging
from 10° to 10”. The upscaling ratio is equal to the number
of cells in each coarse block. Figure 2 also shows the CPU
time savings expressed as the ratio of CPU time at the fine
scale to CPU time at the coarse scale: the larger the ratio
is, the larger the savings is. We can observe that there is an
optimal upscaling ratio, which, for a single time step, it
ranges between 10 and 20. As the number of time steps
increases, the time required for the upscaling (the first term
in the equation) looses weight in the total time, and the
optimal upscaling ratio shifts to larger values, for instance,
for 10 time steps, the most efficient upscaling ranges
between 40 and 100. Figure 3 shows a comparison of CPU
times for a model of 10 cells and an upscaling ratio of 100
as a function of the number of time steps. The CPU time
savings are more noticeable as the transient simulation is
longer since the overhead needed to perform the upscaling
before the beginning of the flow modeling is diluted as
more time steps are considered. The ratio of CPU times at
the fine and coarse scales converges toward 500; that is,
the coarse modeling is 2.5 orders of magnitude faster than
the fine modeling, as the number of time steps is larger.

[37] The CPU time savings are considerable even for
those cases for which an approach without resorting to
upscaling could be feasible. These savings, as already men-
tioned above, will, in fact, be larger, if we account for the
savings in the filtering step of the EnKF. Evidently, these
time savings come with a price, a loss in the accuracy of
the flow and transport model predictions; but, this loss can
be minimized with the careful application of the full tensor
upscaling using a Laplacian with skin. The reader is
referred to the recent works by Li et al. [2010, 2011a] for
an analysis of different upscaling approaches and their ac-
curacy. Finally, we would like to insist that the savings are
immeasurable for fine-scale models with more cells than
our computer resources can handle.
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Figure 2. CPU time as a function of upscaling ratio for a single time step modeling. (a—c) For different
fine-scale model sizes, the CPU time needed to run one single time step in a fine-scale model and the
CPU times needed for the upscaling plus running the flow model for different sizes of the upscaling
block. (d) The ratio of CPU time between the fine scale and the coarse scale; the larger the ratio is, the
larger the savings is.
3. Application Example with
[38] In section 3 a synthetic experiment illustrates the
effectiveness of the proposed coupling of EnKF and el |1/ V2o V2| (15)
: - )
upscaling. ry —1/vV2 12 |ny

3.1.

[39] We generate a realization of hydraulic conductivity
over a domain discretized into 350 by 350 cells of 1 m by
1 m using the code GCOSIM3D [Gomez-Hernandez and
Journel, 1993].

[40] We assume that, at this scale, conductivity is scalar
and its natural logarithm, In K, can be characterized by a
multi-Gaussian distribution of mean —5 (In cm s~ ') and
unit variance, with a strong anisotropic spatial correlation
at the 45° orientation. The correlation range in the largest
continuity direction (x') is Ay =90 m and in the smallest
continuity direction ()’) is A,y = 18 m. The Gaussian covar-
iance function is given by

Reference Field

y(r) =1.04 1 —exp|— ) (14)

with 7 = (ry,r,) being the separation vector in Cartesian
coordinates. The reference realization is shown in
Figure 4a. From this reference realization 100 conductivity
data are sampled at the locations shown in Figure 4b. These
data will be used for conditioning.

[41] The forward transient groundwater flow model is
run in the reference realization with the boundary condi-
tions shown in Figure 5 and initial heads equal to zero
everywhere. The total simulation time is 500 days, discre-
tized into 100 time steps following a geometric sequence of
ratio 1.05. The aquifer is confined. Specific storage is
assumed constant and equal to 0.003 m~'. The simulated
piezometric heads at the end of time step 60 (67.7 days) are
displayed in Figure 6. Piezometric heads at locations W1 to
W9 in Figure 5 are sampled for the first 60 time steps to be
used as conditioning data. The simulated heads at locations
W10 to W13 will be used as validation data.
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Figure 5. Sketch of the flow problem with boundary con-
ditions and observation and prediction wells. Empty squares
correspond to the piezometric head observation wells
(WEW9); solid squares correspond to the control wells
(W10-W13).

3.2. Hydraulic Conductivity Upscaling

[42] For the reasons explained by Zhou et al. [2010] and
Li et al. [2010], the fine-scale realizations must be slightly
larger than the aquifer domain in order to apply the Lapla-
cian-with-skin upscaling approach. We assume that the aq-
uifer of interest is composed of the inner 320 by 320 cell
domain for all realizations. Each one of these realizations is
upscaled onto a 32 by 32 square block model implying an
order of 2 magnitude reduction in the discretization of the
aquifer after upscaling. After several tests, the skin selected
for the upscaling procedure has a width of 5 m since it is
the one that gives the best results in the reproduction of the
interblock specific discharges when compared to those
computed on the fine-scale underlying realizations. This

Head field (reference)

320

[m]

North

0 East 320
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skin size is consistent with earlier findings that recommend
using a skin equal to half the width of the block [Gomez-
Hernandez, 1991; Wen et al., 2003 ; Zhou et al., 2010].

[43] Since the upscaling is applied to the interblock vol-
ume straddling between adjacent block centers, there are
32 by 31 column-to-column interblock tensors (K”<) plus
31 by 32 row-to-row interblock tensors (K”). All inter-
block tensors are transformed into their corresponding tri-
plet of invariants prior to starting the EnKF algorithm.

[44] For illustration purposes, Figure 7 shows the result-
ing triplets for the reference field. Figure 7 will be used
later as the reference upscaled field to analyze the perform-
ance of the proposed method. In Figure 6 (right), the simu-
lated piezometric heads at the end of the 60th time step using
the coarse-scale tensors of Figure 7 are displayed side by
side with the simulated piezometric heads at the fine scale.
The reproduction of the fine-scale spatial distribution by the
coarse-scale simulation is, as can be seen, very good, indicat-
ing a very good performance of the upscaling approach; the
average absolute discrepancy between the heads at the coarse
scale and the heads at the fine scale (at block centers) is only
0.087 m.

3.3. Case Studies

[45] Four cases, considering different types of condition-
ing information, are analyzed to study the performance of
the proposed approach (see Table 1). Cases C and D will
show that the coupling of the EnKF with upscaling can be
used to construct aquifer models that are conditional to
conductivity and piezometric head data, when there is an
important discrepancy between the scale at which the data
are collected and the scale at which the flow model is built.
Cases A and B are included to carry out a standard worth-
of-data exercise in which we analyze the trade-off between
conductivity data and piezometric head data regarding ag-
uifer characterization.

[46] Case A is unconditional, 200 realizations are gener-
ated according to the spatial correlation model given by
equation (14) at the fine scale. Upscaling is performed in

Head field (reference)

[m]

320

North

.0l

0 East 320

Figure 6. Reference piezometric head at the 60th time step. (left) As obtained at the fine scale and

(right) as obtained at the coarse scale.
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Figure 7. Upscaled values for the interblock tensor components: In(K,,.,), In(K,,;,), and rotation angle
for the maximum component measured from the x axis 6 (in degrees) for both the interblocks between
columns and the interblocks between rows. Upscaling method used is Laplacian with a skin of 10 m.

90f 19



W01537

Table 1. Definition of Cases Depending on the Different Sets of
Conditioning Data

Conditioning Data Case A CaseB CaseC CaseD
Hydraulic conductivities K no yes no yes
Dynamic piezometric heads & no no yes yes

each realization and the flow model is run. No Kalman fil-
tering is performed.

[47] Case B is conditional to log conductivity measure-
ments, 200 realizations of log conductivity conditional to
the 100 log conductivity measurements of Figure 3b are
generated at the fine scale. Upscaling is performed in each
realization and the flow model is run. No Kalman filtering
is performed.

[48] Cases A and B act as base cases to be used for com-
parison when the piezometric head data are assimilated
through the EnKF.

[49] Case C is conditional to piezometric heads. The
same 200 coarse realizations from Case A serve as the ini-
tial ensemble of realizations to be used by the EnKF to
assimilate the piezometric head measurements from loca-
tions W1 to W9 for the first 60 time steps (66.7 days).

[s0] Case D is conditional to both log conductivity and
piezometric heads. The same 200 coarse realizations from
Case B serve as the initial ensemble of realizations to be
used by the EnKF to assimilate the piezometric head meas-
urements from locations W1 to W9 for the first 60 time
steps (66.7 days).

[51] In cases C and D we use the measured heads
obtained at the fine scale in the reference realization and
compare them with the coarse-scale simulated ones. There
is an error in this assimilation that we incorporate into the
measurement error covariance matrix as explained in the
description of the approach. Specifically, we here assumed
a diagonal error covariance matrix, with all the diagonal
terms equal to 0.0025 m?; this value is approximately equal
to the average dispersion variance of the fine-scale piezo-
metric heads within the coarse-scale blocks.

3.4. Performance Measurements

[52] Since this is a synthetic experiment, the “true” aqui-
fer response, evaluated at the fine scale, is known. We also
know the upscaled conductivity tensors for the reference
aquifer, which we will use to evaluate the performance of
the updated conductivity tensors produced by the EnKF.

[53] The following criteria, some of which are com-
monly applied for optimal design evaluation [Nowak,
2010], will be used to analyze the performance of the pro-
posed method and the worth of data: (1) The ensemble
mean map should capture the main patterns of variability
of the reference map. (2) The ensemble variance map gives
an estimate of the precision of the maps. (3) The ensemble
average absolute bias map, ey, is made up of

1
€x, = FZ |Xvi,r - )(i,re@/"7 (16)
€ r=1

where X; is the parameter being analyzed, at location i, X; ,
represents its value for realization r, X;,.r is the reference
value at location Z, and N, is the number of realizations of
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the ensemble (200, in this case); it gives an estimate of the
accuracy of the maps. (4) Average absolute bias (AAB),

Np
AAB(X) = Niz €x, 17)
b

where N, is the number of interblocks when X is coarse log
conductivity tensor component or the number of blocks
when X is piezometric head, gives a global measure of ac-
curacy. (5) The square root of the average ensemble spread
(AESP)

1/2

1 2}
AESP(X) = |— , (18)
R,

where of(l is the ensemble variance at location i, gives a
global measure of precision. (6) A comparison of the time
evolution of the piezometric heads at the conditioning piez-
ometers WI-W9 and at the control piezometers W10-W13
is used to evaluate the capability of the EnKF to update the
forecasted piezometric heads using the measured values.

4. Discussion

[54] Ensembles of coarse realizations for the four cases
have been generated according to the conditions described
earlier. Figure 8 shows the evolution of the piezometric
heads in piezometers W1 and W9 for the 500 days of simu-
lation; the first 60 steps (66.7 days) were used for condi-
tioning in cases C and D. Similarly, Figure 9 shows
piezometers W10 and W13; these piezometers were not
used for conditioning. Figure 10 shows the ensemble mean
and variance of the piezometric heads at the 60th time step,
while Figure 11 shows the ensemble average absolute bias.
Figure 12 shows the ensemble mean and variance of
In(K,uc) for interblocks between rows, and Figure 13
shows the ensemble average absolute bias. Finally, Table 2
shows the metric performance measurements for In(Kj.y)
between rows and for piezometric heads at the 30th, 60th
and 90th time steps.

4.1. The EnKF Coupled With Upscaling

[s5] The EnKF has the objective of updating conductiv-
ity realizations so that the solution of the flow equation on
the updated fields will match the measured piezometric
heads. Analyzing cases C and D in Figure 8, we can
observe how the updated fields, when piezometric head is
assimilated by the EnKF, produce piezometric head predic-
tions that reproduce the measured values very well, particu-
larly when compared with case A, which corresponds to
the case in which no conditioning data are considered.
Notice also that piezometric head data are assimilated only
for the first 66.7 days (the period in which the heads are
almost perfectly reproduced in the EnKF updated fields)
while the rest of the simulation period serves as validation.
Additional validation of the EnKF generated realizations is
given in Figure 9, which shows two of the piezometers not
used for conditioning; we can also observe the improve-
ment in piezometric head reproduction for cases C and D
as compared to case A. Furthermore, the analysis of Fig-
ure 10 shows how, for cases C and D, the average spatial
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Figure 8. Piezometric head time series in the reference field and simulated ones for all cases at wells
(left) W1 and (right) W9. The piezometric heads measured at these wells during the first 67.7 days were
used as conditioning data for cases B and D.
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Figure 9. Piezometric head time series in the reference field and simulated ones for all cases at control
wells (left) W10 and (right) W13. These wells were not used as conditioning data for any case.
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Figure 10. Ensemble average and variance of piezometric heads for the different cases.
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Figure 11. Ensemble average absolute bias of piezomet-
ric heads for the different cases.
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distribution, at the end of time step 60, follows closely the
reference piezometric head distribution, while the ensemble
variance is reduced to very small values everywhere. The
ensemble average head bias is also noticeably reduced
when conditioning to heads, not just at the conditioning
locations (as expected) but also elsewhere. A final analysis
to show how conditioning to the heads improves the overall
reproduction of the head spatial distribution is by looking
at the metrics displayed in Table 2. Comparing cases B and
C, it is interesting to notice the increasing impact of the con-
ditioning to piezometric heads as time passes; at time step
30, the initial effect of just conditioning to hydraulic con-
ductivity measurements (which occurs from time step 0) is
still larger than just conditioning to the heads measured dur-
ing the first 30 time steps, but at time step 60, this effect is
clearly reversed, and it is maintained to time step 90 even
though the heads between steps 60 and 90 are not used for
conditioning. As expected, conditioning to both piezometric
heads and hydraulic conductivities gives the best results in
terms of smallest bias and smallest spread.

[s6] From this analysis we conclude that the EnKF
coupled with upscaling is able to generate an aquifer model
at a scale 2 orders of magnitude coarser than the reference
aquifer scale that is conditional to the piezometric heads.

[s7] Besides achieving the original goal of the EnKF
algorithm, it is also important to contrast the final conduc-
tivity model given by the EnKF, with the reference aquifer
model. For this purpose we will compare the final ensemble
of realizations obtained for cases C and D with the upscaled
realization obtained from the reference, fine-scale aquifer
model. Conditioning to piezometric head data should
improve the characterization of the log conductivities.
Indeed, this is what happens as it can be seen when analyz-
ing Figures 12 and 13 and Table 2. In Figures 12 and 13
only the maximum component of the log conductivity ten-
sors for the interblocks between rows is displayed, but the
members of the triplet for the tensor between rows, as well
as the members of the triplet for the tensors between col-
umns, show a similar behavior. The ensemble mean maps
are closer to the reference map in case that conditioning
data are used; the variance maps display smaller values as
compared to case A; and the bias map shows values closer
to zero than in case A. All in all, we can conclude that the
EnKF updates the block conductivity tensors to produce
realizations which get closer to the aquifer model obtained
after upscaling the reference aquifer.

[s8] There remains the issue of conditioning to the fine-
scale conductivity measurements. Since the fine-scale
conductivity measurements were used to condition the fine-
scale realizations, the conditioning should be noticed in the
upscaled model only if the correlation scale of the conduc-
tivity measurements is larger than the upscaled block size.
In such a case (as is the case for the example), the ensemble
variance of the upscaled block conductivity values should
be smaller for blocks close to conditioning datum locations
than for those away from the conditioning points. Other-
wise, if the correlation length is much smaller than the
block size, then all blocks have a variance reduction of the
same magnitude and the impact of the conditioning data
goes unnoticed. Case B is conditioned only on the fine-
scale log conductivity measurements. Comparing cases A
and B in Figure 12 and in Table 2 we notice that for the
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Figure 12. Ensemble average and variance of In(K,,,,) for the different cases.
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Figure 13. Ensemble average absolute bias of In(K,,,,)
for the different cases.
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Table 2. Bias and Spread of Predicted Heads at Time Steps 30,
60, and 90 and of Updated Log Hydraulic Conductivity In K%x at
Time Step 60

Case A Case B Case C Case D
AAB(hy—30) 0.189 0.119 0.124 0.118
AESP (hy—30) 0.201 0.132 0.111 0.086
AAB(My—60) 0.580 0.256 0.224 0.195
AESP (hyi—60) 0.533 0.323 0.186 0.146
AAB(hy—90) 0.672 0.281 0.236 0.204
AESP (hy1—90) 0.627 0.355 0.195 0.153
AAB(InKay) 0.452 0.306 0.417 0.296
AESP(In K;ax) 0.805 0.660 0.702 0.594

unconditional case, the ensemble mean of In(K,,,,) between
rows is spatially homogeneous and so is the variance; how-
ever, as soon as the fine-scale conductivity data are used for
the generation of the fine-scale realizations, the ensemble of
upscaled realizations displays the effects of such condition-
ing, the ensemble mean starts to show patterns closer to the
patterns in the upscaled reference field (Figure 7), and the
ensemble variance becomes smaller for the interblocks
closer to the conditioning measurements. Analyzing case D
in Figure 12, which takes the ensemble of realizations from
case B and updates it by assimilating the piezometric head
measurements at piezometers W1 to W9, we conclude that
the initial conditioning effect (to hydraulic conductivity
data) is reinforced by the new conditioning data, the patterns
observed in the ensemble mean maps are even closer to the
patterns in the reference realization, and the ensemble var-
iance remains small close to log conductivity conditioning
locations and, overall, is smaller than for case B.

[59] Finally, when no conductivity data are used to con-
dition the initial ensemble of realizations, conditioning to
piezometric heads through EnKF also serves to improve the
characterization of the log conductivities as can be seen ana-
lyzing case C in Figure 12 and Table 2. Some patterns of
the spatial variability of In(K,,) are captured by the ensem-
ble mean and the ensemble variance is reduced with respect
to the unconditional case, although in a smaller magnitude
than when log conductivity data are used for conditioning.

[60] From this analysis we conclude that conditioning to
piezometric head data by the EnKF coupled with upscaling
improves the characterization of aquifer log conductivities
whether conductivity data are used for conditioning or not.

[61] It should be emphasized that since the EnKF algo-
rithm starts after the upscaling of the ensemble of fine-scale
realizations ends, the EnKF coupled with upscaling per-
formance will be much restricted by the quality of the
upscaling algorithm. It is important to use as accurate an
upscaling procedure as possible in the first step of the pro-
cess, otherwise the EnKF algorithm may fail. An interesting
discussion on the importance of the choice of upscaling can
be read in the study of the MADE site by Li ef al. [2011a].

4.2. Worth of Data

[62] We can use the results obtained to make a quick
analysis of the worth of data in aquifer characterization,
which confirms earlier findings [e.g., Capilla et al., 1999;
Wen et al., 2002; Hendricks Franssen, 2001; Hendricks
Franssen et al., 2003; Fu and Goémez-Hernandez, 2009;
L. Li, H. Zhou, J. J. Gobmez-Hernandez, and H. J. Hendricks
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Franssen, Jointly mapping hydraulic conductivity and
porosity by assimilating concentration data via ensemble
Kalman filter, submitted to Journal of Hydrology, 2011]
and serves to show that the proposed approach works as
expected. By analyzing Figures 8-13 and Table 2, we can
conclude that conditioning to any type of data improves the
characterization of the aquifer conductivities, and improves
the characterization of the state of the aquifer (i.e., the pie-
zometric heads). The largest improvement occurs when
both, hydraulic conductivity and piezometric head measure-
ments are used. These improvements can be seen qualita-
tively on the ensemble mean maps, which are able to
display patterns closer to those in the reference maps; on
the ensemble variance maps, which display smaller values
than for the unconditional case; and on the ensemble aver-
age bias maps, which also show reduced bias when com-
pared with the unconditional case. Quantitatively, the same
conclusions can be made by looking at the metrics in Table
2. The reproduction of the piezometric heads also improves
when conditioning to any type of data.

[63] It is also interesting to analyze the trade-off between
conductivity data and piezometric head data by comparing
cases B and C. As expected, the characterization of the spa-
tial variability of hydraulic conductivity is better when con-
ductivity data are used for conditioning than when
piezometric head are; also, as expected, the opposite occurs
for the characterization of the piezometric heads.

4.3. Other Issues

[64] We have chosen a relatively small-sized fine-scale
model to demonstrate the methodology since we needed
the solution at the fine scale to create the sets of condition-
ing data and to verify that the coarse-scale models gener-
ated by the proposed approach give good approximations
of the true response of the fine-scale aquifer. We envision
that the proposed approach should be used preferentially
when the implementation of the numerical model and the
EnKF are impractical at the fine scale.

[65s] The ensemble size chosen is relatively large for the
resulting coarse model. We have preferred to use a large
ensemble size rather than a smaller one coupled with a
localization of the covariance of the Kalman gain [Gaspari
and Cohn, 1999 ; Hamill et al., 2001 ; Hendricks Franssen
and Kinzelbach, 2008; Chen and Oliver, 2010] to make
sure that the performance of the method was not affected
by the localization step. Once the method is proven to
work, it is advisable to use a smaller ensemble size coupled
with a localization approach to increase the efficiency of
the filter.

[66] To our understanding, it is the first time that the
EnKF is applied on an aquifer with conductivities charac-
terized by full tensors. We found that the best way to han-
dle the tensors is through their principal components. More
sophisticated EnKF implementations, such as double ensem-
ble Kalman filter [Houtekamer and Mitchell, 1998], ensem-
ble square-root filter [Whitaker and Hamill, 2002], a
Kalman filter based on the Karhunen-Loeve decomposition
[Zhang et al., 2007], or a normal-score ensemble Kalman fil-
ter [Zhou et al., 2011], could have been used, which would
have worked equally well or better than the standard EnKF.

[67] The example has been demonstrated using a refer-
ence conductivity field that was generated following
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a multi-Gaussian stationary random function. Could the
method be applied to other types of random functions, i.e.,
non-multi-Gaussian or nonstationary? It could, as long as
each step of the approach (see section 2) could. More pre-
cisely, for the first step, the generation of the fine-scale hy-
draulic conductivity measurements, there are already many
algorithms that can generate realizations from a wide vari-
ety of random functions, including non-multi-Gaussian and
nonstationary; the second step is basically deterministic,
we replace an assembly of heterogeneous values by an
equivalent block tensor, the underlying random function
used to generate the fine-scale realizations has no interfer-
ence on the upscaling; however, for the third step, the appli-
cation of EnKF to non-multi-Gaussian parameter fields is
more difficult, some researchers propose using particle fil-
ters [Arulampalam et al., 2002], while some others have
worked on variants of the EnKF to handle the non-multi-
Gaussianity [e.g., Sun et al, 2009; Zhou et al., 2011;
Schoniger et al., submitted; Li ef al., 2011c]; the nonstatio-
narity is not an issue since the EnKF deals, by construction,
with nonstationary states.

[68] As mentioned in the previous paragraph, the method
has clearly three distinct steps that are not linked in any way
to the specifics of the demonstration exercise presented.
Therefore, the method proposed is, in principle, applicable
to other types of case studies, such as different geometries,
different initial and boundary conditions, different degrees
of heterogeneity, different correlation lengths, different
simulation periods, as long as there are tools capable to
carry out each one of the steps, i.e., generation of the fine-
scale conditional conductivity realizations, upscaling and
filtering. In this respect, the method could also be applica-
ble to a case in which the fine-scale conductivities are al-
ready locally anisotropic; however, the generation of fine-
scale locally anisotropic conductivity realizations is an
issue not yet resolved, that would need some research, once
this issue is overcome the rest of the method would suffer
no modification.

[69] For real cases, there will be additional measurement
and model errors, which can be easily incorporated in the
first and third step of the method (they will have no rele-
vance in the upscaling step). These errors will, necessarily,
affect the quality of the final results.

5. Conclusion

[70] The “missing scale” issue brought out by Tran
[1996] is still, today, much overlooked. Data, particularly
conductivity data, are collected at smaller support volumes
and in larger quantities than years ago, yet when construct-
ing a numerical model on the basis of these data, the dis-
crepancy between the scale at which data are collected and
the scale of the numerical model is most often disregarded.

[71] We have presented an approach to rigorously account
for fine-scale conductivity measurements on coarse-scale
conditional inverse modeling. The resulting model is com-
posed of an ensemble of realizations of conductivity ten-
sors at a scale (much) coarser than the scale at which
conductivities were measured. The ensemble of final real-
izations is conditioned to both conductivity and piezomet-
ric head measurements. The latter conditioning is achieved
by using the ensemble Kalman filter on realizations of

17 of 19



W01537

conductivity tensors. To handle the tensor parameters, we
propose to work with the principal components of the ten-
sors, instead of their representation on a specific reference
system, this approach allows the ensemble Kalman filter to
perform a tensor updating which produces realizations that are
conditioned to the transient piezometric head measurements.
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